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Abstract
Memory disaggregation has replaced the landscape of dat-
acenters by physically separating compute and memory
nodes, achieving improved utilization. As early efforts, ker-
nel paging-based approaches offer transparent virtual mem-
ory abstraction for remote memory with paging schemes
but suffer from expensive page fault handling. This paper
revisits the paging-based approaches and challenges their
performance in paging schemes. We posit that the overhead
of the paging-based approaches is not a fundamental lim-
itation. We propose DiLOS, a new library operating sys-
tem (LibOS) specialized for paging-based memory disaggre-
gation. We have revamped the page fault handler to get away
with the swap cache and incorporated known techniques
in our prefetcher, page manager, and communication mod-
ule for performance optimization. Furthermore, we provide
APIs to augment the LibOS with application semantics. We
present two app-aware guides, app-aware prefetching and
bandwidth-reducing memory allocator in DiLOS. Through
extensive evaluation of microbenchmarks and applications,
we demonstrate that DiLOS outperforms the state-of-the-art
kernel paging-based system (Fastswap) up to 2.24× and a
recent user-level system (AIFM) 1.54× on a real-world data
analytic workload.
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1 Introduction
Resource disaggregation is rearchitecting datacenter infras-
tructures to address resource management challenges, in-
cluding independent scale-out, memory capacity expansion,
transparent remote memory access, domain-specific accel-
erators, emerging persistent media, and fault domain iso-
lation [11]. It splits computation, memory, storage, and ac-
celerators into individual resource pools and allows flexible
resource provisioning beyond the boundary of a single ma-
chine. The benefits are a key driver for solving the chronic
resource under-utilization [24, 64, 70] and memory wall [39]
problems in datacenters. Cloud service providers are build-
ing disaggregated datacenters (DDCs) to take full advantage
of resource disaggregation [39].

Memory disaggregation aims to split computing and mem-
ory in DDCs, placing computing and memory in physically
separate nodes. A computing node has a large number of
computational units, while a memory node provides a large
amount of memory with few or no computational units.
Memory disaggregation enables a large memory pool shared
across computing nodes and overcomes the memory wall
in the cluster of traditional server nodes [2, 23, 49, 64]. Fast
networking technologies such as RDMA and user-space net-
working stacks have reduced the remote access latency [69]
and accelerated the trend towards memory disaggregation.

Early efforts to adopt memory disaggregation have mostly
built it as a kernel feature [2, 23, 39, 49, 64]. These approaches
refurbish the existing kernels to migrate pages between the
computing node and the memory node. Computing nodes
evict pages to memory nodes under memory pressure, un-
map them in their page table, and fetch them back on page
faults. This paging-based mechanism changes the address
mapping behind the scene; applications use disaggregated
memory without any modification to their code.
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The compatibility of the paging-based approaches, how-
ever, comes with a cost. Frequent kernel-user switching to
handle page fault exceptions incurs non-negligible perfor-
mance overhead. In addition, recent work [60] reports the
size gap between a page and actual access units (e.g., an ob-
ject accessed by an application) introduces IO amplification
because paging-based approaches fetch an entire page from
a memory node.

To overcome these limitations, other approaches take ad-
vantage of user-level semantics from applications or lan-
guage runtimes. AIFM [60] and Carbink [77] put user-level
libraries and APIs in charge of remote memory manage-
ment to avoid page faults. Semeru [72] and MemLiner [73]
improve the performance of JVM-based applications by us-
ing runtime semantics. Semeru reduces the number of page
faults and network bandwidth by offloading JVM garbage
collection to its memory node. MemLiner proposes a far-
memory-friendly garbage collector that traces recent objects,
aligning memory access patterns of tracing and main thread,
and in turn, improves remote memory prefetching. However,
they trade compatibility for performance. AIFM and Carbink
programming models require annotations for remote objects
and mandate custom C++ APIs. Semeru and MemLiner only
support JVM-related programming languages.
Here, we look back at the burden of the kernel paging-

based model: Is the performance overhead of the kernel-based
approaches the fundamental limitation worth giving up com-
patibility? The question has led us to rehash existing at-
tempts to curb the paging overhead and the IO amplification.
We claim that the performance overhead from paging is not
fundamental. In this paper, we demonstrate how to over-
come the performance limitation by specializing the kernel
for memory disaggregation.

To demonstrate our claim, we choose Library OS (LibOS)
as our baseline framework. LibOS has the advantage of the
simplified code path between an application, an OS, and hard-
ware. The simple code base allows us to focus on building
our design ideas efficiently. Also, the absence of user-kernel
crossing overhead [32, 34, 57] opens doors for additional
improvements by augmenting a LibOS kernel with appli-
cation semantics. Moreover, by using a POSIX-compatible
LibOS, developers need not modify existing applications for
memory disaggregation.
In this paper, we propose a LibOS-based memory disag-

gregation system, DiLOS, that offers both performance and
compatibility. DiLOS is paging-based but eliminates unnec-
essary overhead in its page fault handler. At its core, DiLOS
builds its own data-path for memory disaggregation rather
than reusing the slow kernel swap subsystem as in existing
kernel paging-based systems [2, 23, 49], significantly improv-
ing latency when accessing remote pages in its page fault
handler. On the base of the fast page fault handler, DiLOS
incorporates known techniques for performance optimiza-
tion, such as prefetching, background write-back, and fast

RDMA communication. DiLOS supports POSIX compatibil-
ity; it loads the existing binary without any modifications.

In addition, DiLOS provides APIs to integrate application
semantics in the form of guides. A guide is a pluggable mod-
ule implemented in the form of a third-party binary (like
shared libraries in Linux) without modifying the main code
of an application. DiLOS showcases two examples of guides:
an app-aware prefetcher and a bandwidth-reducing mem-
ory reclamation. The prefetchers take the guide as a cue
for further performance improvement over general-purpose
prefetchers. The bandwidth-reducing memory reclamation
uses hints from a user-level memory allocator to exclude
unused areas in a page when migrating pages between a
computing node and a memory node.
We implement DiLOS on a mature, open-source LibOS,

OSv [32]. Although we have decided to implement DiLOS
on a LibOS system, the core design of DiLOS does not ex-
clude Linux as a development platform. Yet, we take full
advantage of the small code base of the LibOS system and
present DiLOS as a proof-of-concept implementation. We
leave implementation on Linux for future work (§5.1).

For evaluation, we compare DiLOS with AIFM and the ker-
nel paging-based system, Fastswap. When a computing node
has 12.5% and 100% local memory of the total working set,
DiLOS performs 54% and 83% better than AIFM, respectively,
even without modifying the applications. Against Fastswap,
DiLOS demonstrates up to 2.2× superior performance in
real-world workloads. In addition, DiLOS with an app-aware
prefetcher achieves up to 62% higher throughput in Redis
than DiLOS with a general-purpose prefetcher proposed in
recent work [49].

2 Background
There are basically three approaches to memory disaggre-
gation: either at the kernel-level, at the user-level, or at the
hardware-level. The first two are implemented in software
using conventional NICs (both RDMA and TCP), and the
other one uses specialized hardware. In this work, we mainly
focus on kernel-level and user-level. The hardware approach
is discussed in §7.
The kernel-level memory disaggregation, such as Infin-

iswap [23], Leap [49], and Fastswap [2], extends Linux’s swap
subsystem to use remote memory as swap space. However,
Linux’s swap mechanism involves complex data structures
to manage swap space, incurring significant overhead (§3.1).
LegoOS [64] proposes a new kernel design by splitting ker-
nel services over disaggregated resources. While LegoOS
provides a new building block for resource disaggregation, it
also relies on complex general-purpose kernel code, showing
moderate performance compared to user-level systems.
User-level systems, on the other hand, offer a language

runtime (Semeru [72] and MemLiner[73]) or a library inter-
face (AIFM [60] and Carbink [77]). Semeru and MemLiner
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Figure 1. The performance breakdown of Fastswap [2]’s
page fault handler. 99% of page faults are handled without
reclamation.

modify Java Virtual Machine (JVM) to obtain hints from ser-
space and gain full knowledge of a Java application’s mem-
ory layout. With this approach, Semeru offloads memory-
intensive parts (garbage collection) to the memory node, and
MemLiner reduces the local working set. AIFM offers C++
STL-like interfaces for application developers to integrate
remote memory features into their applications. Since AIFM
is implemented at the user-level and uses a user-space net-
working stack, AIFM delivers an efficient data-path avoiding
expensive kernel context switching. Moreover, AIFM also
has the full knowledge of application semantics, such as the
C++ library memory layout, which translates to useful hints
for prefetching or offloading memory operations.

3 Motivation
In this section, we review the reported limitations of kernel
paging-based approaches [60] and assess the potential for
performance improvement in page fault handling.

3.1 Cost of Handling Page Faults
In kernel paging-based systems, the page fault handler lies
on the critical path. To understand the cost of page fault
handling, we begin with a latency analysis of the state-of-
the-art kernel paging-based system, Fastswap [2].
Figure 1 shows the latency breakdown of page fault han-

dling when accessing a remote memory node to fetch a
faulted page. Fetching a page will reclaim existing pages
in the local DRAM if it has insufficient space. In the analysis,
the reclaimed pages are clean, so the kernel does not write
back evicted pages to the remotememory node via RDMA, re-
vealing the software cost of reclamation caused by Fastswap.
No reclamation in the figure represents a breakdown when
eviction does not happen.
In both average and no reclamation cases, the most sig-

nificant portion of the latency stems from fetching a remote
page: 46%. Fetching a remote page via RDMA is unavoid-
able regardless of the approaches, whether kernel paging-
based or user-level. Another inevitable delay is from han-
dling hardware page fault exceptions (hardware exception
delay + OS exception handler), which takes up 9% (0.57 `s).
The remaining portions come from the executing OS code
of the page fault handler. Fastswap performs direct page

128 256 512 1024 2048 4096
0

1

2
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La
te
nc

y
(`
𝑠
) read

write

Figure 2. RDMA latency (`s) for a range of object sizes. One-
sided operations are used.

Count %

Major page fault 655,737 12.5
Minor page fault 4,587,164 87.5

Total 5,242,901 100.0

Table 1. Number of page faults during a 20GB sequential
read on Fastswap. The local cache size is 2.5GB.

reclamation in the context of the page fault handler. Even
though Fastswap reduces the reclamation time through a ded-
icated background kernel thread, not all reclamation work
is offloaded to the thread, and reclamation still takes up a
significant portion (29%) of the total page fault handling la-
tency. This result indicates that in common cases (Average in
Figure 1), reducing the software costs is essential to improve
page fault handling latency.
Cost of IO amplification. When an application accesses
a small object (less than 4 KB) in remote memory, a typical
paging subsystem fetches the entire 4 KB page, causing IO
amplification. To reduce IO amplification, AIFM fetches only
accessed objects in a page using application-level semantics.
SemSwap [15] tracks hot objects using user-level semantics
and consolidates them onto a single physical page. While
such fine-grained accesses effectively reduce the network
bandwidth consumption and latency, we ponder the serious-
ness of the IO amplification; How severely does the object
size affect the access latency? We run a simple experiment
to measure the RDMA latencies of a range of object sizes
between two nodes. Both nodes were configured as Ubuntu
18.04, and we used libibverbs in order to read and write
objects. The results are in Figure 2. From the figure, we note
that the RDMA latency for fetching a 4 KB page imposes
only 0.6 `s extra delay compared to fetching a 128 B object;
that is, even though the IO amplification increases network
bandwidth consumption, it is not a major contributing factor
in fetching delay.

3.2 Cost of Prefetching
Prefetching is a common yet integral mechanism to hide
remote access latency. The swapping subsystem in Linux
“offers a backup on disk for unmapped pages” [12], and

169



EuroSys ’23, May 9–12, 2023, Rome, Italy Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon

Fastswap, Infiniswap, and Leap all extend the swapping sys-
tem to replace a local disk with remote memory. The Linux
swap system has an intermediate buffer called swap cache
to aggregate pages for swap-ins and swap-outs. Accesses to
those pages in the swap cache result in minor page faults,
and accesses to those not in the swap cache result in major
page faults. We analyze the numbers of major and minor
page faults in 20 GB sequential read on Fastswap and present
the results in Table 1. Linux’s default prefetching policy is
readahead, and the given workload of sequential read results
in a high hit ratio for pages in the local swap cache. Only
12.5% of pages incur major page faults, and the majority of
87.5% are minor page faults serviced from the swap cache.
Latency from minor page faults is far smaller than major
page faults, but the sheer number of such faults imposes
overhead on the existing paging-based systems.

3.3 Our Approach: Specialized Kernel with LibOS
The analysis in the previous subsection reveals the over-
head of the general-purpose design of the paging subsystem.
Fastswap, Infiniswap, and Leap leverage the existing swap
subsystem for ease of development, but the approaches come
at a cost: the high cost of page fault handling and prefetch-
ing. However, the cost is not fundamental. We claim that the
kernel paging-based approach can overcome the overhead by
specializing the kernel data-path for memory disaggregation.

To demonstrate our claim, we revamp the existing paging
mechanism to hide network latency to access remote mem-
ory and cut unnecessary software costs as well as to build a
specialized prefetching mechanism. Although the general-
purpose OSes have room for specialization, we observe that
using Library OS (LibOS) is the best fit for our goal.
First, because a LibOS is linked to applications directly,

each application has an exclusive LibOS kernel. This design
translates to the ease of specializing operating system for
memory disaggregation. Using the simplified codebase of
a LibOS, we can build a more optimized data-path for ab-
stracting remote memory than the traditional kernel. There
are many examples of specializations using LibOS: ClickOS
and MiniCache for NFV [35, 48], LightVM and ukvm for
instant booting [47, 74], Haven and Graphene-SGX for en-
clave [6, 14], and HermitCore for HPC [40].

Second, by the design of LibOS’ single address space mem-
ory layout and zero overhead system calls, LibOS can natu-
rally integrate domain-specific hints to improve performance
for memory disaggregation with negligible costs. We explore
two opportunities: i) LibOS exploits application-level seman-
tic hints and accelerates prefetching of remote pages (§4.3).
ii) LibOS can use states of allocated and freed objects from
the user-level memory allocator (e.g., libc malloc) to exclude
freed objects when fetching a remote page, saving the band-
width consumption (§4.4).

LibOS

Application

Page ManagerPrefetcher

Direct Mapper

RDMA Backend Driver

Communication
Module

RDMA NIC

VMM-bypass
Data Path

General Algorithm

Page Fault
Handler

RDMA Frontend Driver

Control 
Path

PTE Hit Tracker

Reclaimer

Allocator

CleanerUnified
Page Table

Hypervisor

SubmodulesApp-Aware Guide

Figure 3. DiLOS’ computing node overview

Third, unlike the user-level approaches (e.g., AIFM), using
a LibOS does not require modifications of existing applica-
tions and provides binary compatibility with POSIX APIs
such as malloc and free.

4 System Architecture of DiLOS
DiLOS aims to rebuild a memory subsystem specialized for
memory disaggregation. Unlike prior works [2, 23, 49], Di-
LOS does not rely on complex general-purpose kernel sub-
systems. Instead, it has a paging subsystem, which is simple
yet tailored for a low page fault handling overhead. To mini-
mize the overhead, the paging subsystem uses a unified page
table as a replacement for Linux’s swap cache. It shortens
the code path between hardware exception and network IO
and reduces the number of minor page faults. The subsystem
also eagerly evicts local pages in the background to prevent
page fault handling from being lagged from the reclamation.

We build DiLOS on a unikernel (LibOS) to take advantage
of its lightweight architecture. DiLOS consists of four key
components running on a computing node and a memory
node. The four components are a page fault handler (§4.2), a
page prefetcher (§4.3), a page manager (§4.4), and a commu-
nication module (§4.5). This section begins with the design
overview of DiLOS (§4.1) and elaborates on its four key com-
ponents. DiLOS’ page prefetcher and page manager sections
also introduce two app-aware guides to augment DiLOS,
providing additional performance improvements and saving
network bandwidth.

4.1 Design Overview
Figure 3 shows the overview of the computing node. An
application and the LibOS run in a single address space and
interact via POSIX APIs. The LibOS runs as a guest operating
system, and the hypervisor offers virtualized interfaces, the
frontend and backend drivers for network IO. The arrows in

170



DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation EuroSys ’23, May 9–12, 2023, Rome, Italy

Virtual Address Remote Virtual 
Address

Physical Address

action 110
010

011

100
fetching

vaddr1 addr1

vaddr2 remote

Address U/W/P

addr1

addr2

vaddr2

vaddr1

Compute Node Memory Node

Figure 4. Unified Page Table

Figure 3 represent the interaction between the four key com-
ponents of a DiLOS computing node. The guides next to the
application represent app-aware pluggable modules. They
are compiled code (e.g., shared library binary) that enhances
DiLOS performance based on app-specific prefetching and
page reclaim implementation. The guides do not requiremod-
ifications of the main applications, working as a third-party
library to modify the default behaviors of DiLOS.
Unified page table. At the heart of DiLOS’ paging sub-
system lies the unified page table. It has a compact form
representing the memory space for both local DRAM and
remote memory without using the swap system or the swap
cache. Figure 4 shows how the unified page table works. The
unified page table complies with the hardware page table for-
mat (e.g., the Intel four-level page table), and each page table
entry (PTE) has four DiLOS tags: local, remote, fetching,
and action. They are identified by the three least signifi-
cant bits (user, write, and present bits) in the PTE. When
the present bit is set, the PTE is local, and the hardware
MMU translates a virtual address to a physical address (or-
ange). For other cases, DiLOS uses the remote (green) and
fetching (red) PTEs to mark their page as remote and fetch-
ing, respectively (§4.2). The action PTE (purple) embeds
action data used to implement a page fault handling guide.
If the PTE value is action, the DiLOS page fault handler
calls the guide provided by the application developers. The
guide refines the behavior of the DiLOS page fault handler.
On behalf of the page fault handler, the guide issues cus-
tom prefetching requests (§4.3) and fine-grained fetching
requests to save network bandwidth (§4.4).

4.2 Page Fault Handler
The main goal of the DiLOS page fault handler is to reduce
the page fault handling latency. The key idea is to shorten
all necessary code paths before making an asynchronous
network request. The existing kernel paging-based systems
have to go through the complex swap subsystem code caus-
ing high overhead for managing extra data structures (e.g.,
the Linux swap cache). After allocating memory for the swap
cache and its data structure, they issue an RDMA request.
In contrast, the DiLOS’ page fault handler checks only a
single data structure before making an RDMA request, the

unified page table. DiLOS encodes all information needed
for memory disaggregation into the page table.

When an application accesses pages not in the local cache
(whose present bit is zero), a page fault occurs. DiLOS’ page
fault handler checks the PTE value and handles the page fault
depending on the DiLOS tag in the unified page table. If the
PTE value indicates remote, the handler changes the value to
fetching and makes an RDMA request to obtain its remote
page. During the fetching, if a page fault handler in the other
CPU core reads the fetching value, it just waits until the PTE
value changes, preventing duplicated fetching requests from
multi-threads. After completion of the fetching, the page
fault handler maps the fetched page to the page table.

4.3 Page Prefetcher
DiLOS does not use the swap cache to store fetched (or
prefetched) pages but maps them directly into the page table;
All fetched and prefetched pages are mapped into the unified
page table immediately, preventing minor page faults caused
by the swap cache.

However, this design poses a challenge for implementing
prefetching algorithms. Prefetch algorithms need the hit
ratio and the access history of prefetched pages, which used
to be provided by minor page fault statistics in the swap
cache. Here, DiLOS takes an alternative approach to obtain
the hit ratio and access history; it deploys an extra service
called a PTE hit tracker. Upon prefetching, the PTE hit tracker
scans accessed bits of prefetched PTEs and collects the result
to calculate the hit ratio and access history.

Prefetching and hit tracker work do not incur extra latency
to DiLOS page fault handling because they happen while the
page fault handler waits for fetching a 4KB page. We observe
that 2-3 `𝑠 (4 KB page fetching in Figure 1) is enough time
to run the hit tracker and issue an asynchronous prefetch
request, effectively hiding their latency to the window of a
4KB RDMA request.

DiLOS has two default general-purpose prefetchers: Linux’s
readahead prefetcher [28] and Leap’s majority trend-based
prefetcher [49]. Also, DiLOS’ prefetcher has an event-based
programming interface for guides. It supplies prefetching
information (fault address, hit ratio, and access history) to an
app-aware guide, and the guide provides prefetching code
to augment the default prefetchers.
Guide for app-aware prefetching. For applications whose
memory access patterns are irregular, general-purpose prefetch-
ing algorithms do not perform well in predicting the next
pages. For example, when an application traverses a linked
list, its memory access pattern is a sequence of pointer indi-
rections (called pointer-chasing). In such an access pattern,
the past access history does not provide meaningful informa-
tion for the next page, and general-purpose prefetchers based
on the history may perform as badly as none. Understanding
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Figure 5. Memory layout of a linked list (left) and prefetch-
ing with an app-aware prefetcher guide (right)

the application semantics and devising a prefetching strategy
is the necessary next step accordingly.
DiLOS showcases the design of an app-aware prefetcher

to address the problem. Let us begin with a linked list as
shown on the left side of Figure 5. Each node in the linked
list is on a different page. During the list traversal, an appli-
cation accesses Page #1, Page #2, and Page #3 in sequence. In
order to prefetch the correct next page, the prefetcher must
garner the information from the next pointers in the nodes.
To prefetch the next page after Page #1, the prefetcher has
to wait until Page #1 arrives. However, the required infor-
mation is just the *next pointer value of node #1. What if
the prefetcher issues a subpage prefetching for node #1 right
after the fetching request for Page #1 has been issued? As
shown on the right side of Figure 5, the subpage prefetching
request may deliver node #1 ahead of Page #1 being fetched
via a separate queue; thereby, the prefetcher gains knowl-
edge about the next page to fetch quickly. The subpage is
discarded after a page fetch for Page #2 has been issued.

In general, given the application semantics and the mem-
ory layout, an app-aware prefetcher guide plays the role of
information conveyor from the application to the paging sub-
system. The application dictates via prefetcher guide APIs
how the prefetcher should work on behalf of the applica-
tion. Application developers provide the guide as a compiled
third-party binary so that it can be loaded with the exist-
ing application binary. If an app-aware prefetcher is not
provided, DiLOS runs its default prefetcher.

4.4 Page Manager
Page reclamation during page fault handling takes a large
portion of total latency in Fastswap as shown in Figure 1.
DiLOS’ page manager hides the page reclamation latency to
the window of fetching a remote 4KB page via background
and eager eviction of the least frequently used pages. When

the page fault handler needs a new page, the allocator in the
page manager provides a free page in the local DRAM.When
the local DRAM becomes full, the page manager performs
page reclamation to free pages. To avoid page reclamation
executing in the critical path, the reclamation happens on
a background thread and always keeps a few free pages by
eagerly evicting the local cache. The reclamation process is
done by twomodules: a cleaner and a reclaimer. The allocator
inserts all newly allocated pages into an LRU list. The cleaner
periodically scans the LRU list to find dirty pages whose dirty
bit is marked. Then, it writes them back to the memory node
and clears the dirty bits (cleaning). When the system is under
memory pressure, the reclaimer evicts the least frequently
accessed clean pages according to the clock algorithm.
Guided paging for bandwidth reduction. Similar to the
page fault handler and the prefetcher, DiLOS’ page manager
has an API for app-aware guides. To demonstrate the usage
and usefulness of the API, we design guided paging that
reduces network bandwidth.

The paging-based memory disaggregation systems always
use 4KB pages for communication. As discussed in §3.1, the
IO amplification due to the unit of 4KB page has a limited
effect on page fault handling latency. However, it still wastes
network bandwidth. In this case, transferring only used areas
(i.e., live objects) of pages reduces the network bandwidth.
To achieve it, DiLOS presents a new paging mechanism,
which exploits vectorized (or scatter/gather) RDMA requests
to fetch and evict only used areas on a page. The guide
uses allocation information in an application-level memory
allocator (malloc) to identify the used areas. This guided
paging is done transparently to existing applications.
The guided paging utilizes the action PTE in the unified

page table. At a high level, the app-aware guide encodes the
positions of the live objects within a page to its PTE value,
and then the page fault handler and reclaimer use the PTE
value to fetch and reclaim the live objects only. During the
page reclamation, the cleaner calls its app-aware guide. Then,
the guide identifies and returns which chunks in a page are
currently used by reading the allocator’s memory layout.
The DiLOS’ user-level memory allocator maintains per-page
allocation bitmaps to represent the live objects. The cleaner
writes the only used area in an evicted page to the memory
node with a vectorized RDMA request instead of writing the
entire page contents. After completion of the RDMA request,
the cleaner logs the request’s vector, and then the reclaimer
evicts the page by updating its PTE to an action PTE. Later,
when the evicted page is accessed, the action PTE contains
vector information used for fetching the page.

The guide helps DiLOS paging systems to eliminate un-
used areas when evicting and fetching a page, effectively
saving network bandwidth. The benefit of the guide is using
only allocator semantics, applicable to all applications and
runtime without requiring application semantics.
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4.5 Communication Module
DiLOS’ communication module aims to mitigate the source
of unexpected delays in RDMA connections, such as head-
of-line blocking or lock waiting. To hide the delays, the
communication module handles requests from the multiple
modules in a shared-nothing manner. For example, the page
fault handler’s requests must not be blocked by other low
prioritized requests from a prefetcher or a manager (head-of-
line blocking). To prevent this situation, the communication
module assigns per-module queues to each core. This way,
regardless of the core that it runs, any paging module dis-
ables preemption and gains blocking-free access to an RDMA
queue. Also, multiple threads running on a single core share
the queue without expensive locking.

The communication module also assigns per-core RDMA
queues for app-aware guides. The guides may employ their
own subpaging mechanisms and need separate queues from
the paging modules. The per-core queues for a guide guar-
antee blocking-free access to subpaging requests.

5 Implementation
We have built DiLOS based on the OSv unikernel version
0.55 [32]. DiLOS’ core part is written in 4,454 LoC 1. We
have also modified 322 LoC of OSv to link the core part and
442 LoC of QEMU (version 4.2.1) to implement the RDMA
backend driver. DiLOS’ memory node consists of 312 LoC.
Prefetchers and guides. DiLOS has two general-purpose
prefetchers based on readahead [28] and majority trend [49].
We have also implemented app-aware guides for the prefetcher
and the allocator. The prefetcher guide uses Redis [61]’s data
structure layouts to predict memory access patterns, and
their detailed implementation is described in §6.3. The app-
aware allocator guide of DiLOS is based on Microsoft’s mi-
malloc [42], which is a simple yet high-performance memory
allocator. DiLOS’ allocator tracks subpage usages via bitmaps.
The prefetcher consists of 275 LoC, and the allocator has 951
LoC of modifications in the mimalloc.
Memory node. DiLOS uses one-sided RDMA for communi-
cation. A server process in the memory node handles setup
requests from the computing node and registers its memory
region to its RDMA NIC (RNIC). After that, the RNIC serves
all read and write RDMA requests from the computing node.
Lastly, the memory node uses huge TLB pages for the mem-
ory region. Huge pages allow the whole RNIC page table to
fit in the RNIC’s cache and reduce host memory accesses for
page table walks.
Low-latency RDMA driver. The RDMA driver available at
the moment of our system development lacked support for
OSv. We have built our own RDMA driver. We separate the
data-path from the control-path in DiLOS. Our focus in driver

1We use SLOCCount for the original code and diff for modifications.

development is a fast data-path and an easy-to-implement
control-path on the virtualized platform.

Using a virtualized RDMA driver causes significant over-
head for the data-path due to extra copying of payloads from
LibOS (guest OS) to the host driver (hypervisor) and VM ex-
its. To avoid this overhead, DiLOS bypasses the hypervisor
and directly communicates with RNICs. RDMA’s data-path
involves two steps (write, for example): putting data in the
RDMA memory region and issuing commands to an RNIC
through the MMIO region in user-space. Then, the RNIC
reads the user-space data using DMA. To communicate with
RNICs, DiLOS’ host driver exposes its RDMA and MMIO re-
gions to LibOS’ (single) memory address space and populates
the mapping table of the address space in the RNICs. This
way, LibOS accesses RNICs directly, and the driver’s data-
path requires neither expensive VM exits nor data copying,
exhibiting performance close to native RDMA drivers.

To isolate data-path amongVMs, DiLOS’ driver uses RDMA’s
protection key mechanism. In RDMA, each memory region
is associated with its own protection key, and RNICs allow
accessing the memory region only when a proper protection
key is provided. Therefore, a malicious LibOS cannot access
arbitrary memory regions assigned to other LibOSes even if
they share the same RNIC.
For the simple implementation of the control-path, our

RDMA driver reuses the host-side device driver. Our driver
passes control-path requests to the backend driver in the
hypervisor using virtio. Then, the backend driver adds
modifications to the requests (e.g., to populate the address
mapping table in an RNIC, the driver translates all addresses
to LibOS’ addresses) and issues them to the host-side device
driver. Since virtio requires VM exits, the control-path
is slower than running in native RDMA drivers. However,
DiLOS and other memory disaggregation systems use the
control-path only once at the initialization stage to establish
a connection between the computing node and the memory
node. Therefore, the high cost of the control-path does not
affect the overall performance of memory disaggregation
systems, and we have decided to trade off the performance
for simple implementation.

Our design choices in the driver implementation are iden-
tical in spirit to VMM-bypass [43], MasQ [25], and HyV [54]:
directly mapping data-path resources to VMs’ memory re-
gion. We have also considered PVRDMA [56], but we have
opted out. Its driver exits the VM upon every request, deliv-
ering limited performance.

Our RDMA driver has additional IO optimization to gain
low latency close to the host driver. Mellanox RDMA devices
offer the BlueFlame (or WQE-by-MMIO) feature, which en-
ables transferring RDMA commands over MMIO, not DMA.
BlueFlame is an essential feature for low latency [29]. How-
ever, the vanilla OSv lacks support for a write-combining
buffer that BlueFlame uses for the efficient MMIO. We have
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modified the OSv to support the write-combining buffer and
enable the BlueFlame feature on DiLOS.
Compatibility layer. DiLOS uses two types of memory
APIs for disaggregatedmemory and local-onlymemory. Both
types create and destroy virtual addresses in the unified page
table, but pages allocated by disaggregated memory APIs are
migrated to the memory node. To use memory disaggrega-
tion, the application has to use ddc_malloc and ddc_free
functions. Internally, the function uses the mmap call with
the MAP_DDC option, indicating memory disaggregation is
enabled. The mmap call returns a virtual address whose page
faults are handled by DiLOS’ page fault handler.

To provide binary compatibility, DiLOS has a custom ELF
loader to replace original APIs with DiLOS APIs. In the appli-
cation loading stage, the ELF loader patches all malloc and
free calls in the application’s symbol table with correspond-
ing DDC APIs. When implementing guides, the ELF loader
provides hooking interfaces of an application binary. Some
guides often use the hooking interface to collect necessary
application information. For example, in §4.3, the prefetcher
has to know the position of the traversing node to fetch the
first node (node #1). Thereby, the prefetcher hooks the list
traversing code and tracks the position of the current node.

5.1 Discussion

Applying features of DiLOS to general-purpose OSes.
The paging subsystem design of DiLOS does not have in-
herent dependence on LibOS systems. In theory, it should be
applicable to general-purpose OSes. For example, the swap
cache in the Linux kernel may be replaced with a unified
page table, a direct mapper, and a hit tracker. Linux may
utilize the eBPF subsystem [31] to implement app-aware
guides. Fastswap may adopt DiLOS’ page manager design
to hide its reclamation time in the page fault handler. How-
ever, unlike LibOS, general-purpose OS’ mode switching and
multi-applications model limit the performance of the pag-
ing subsystem design. DiLOS employs LibOS to show the
performance without the overheads.
Applying DiLOS to disk-based swapping. Since the
paging-based memory disaggregation originated from disk-
based swapping, the DiLOS’ design choices (e.g., shortening
the code path between exception and I/O) can improve the
disk-based swapping performance also. However, traditional
block devices (HDDs and SSDs) are much slower than far
memory using RDMA. Accordingly, the I/O will be the domi-
nant overhead hiding performance improvements of DiLOS’
design. Modern NVMe drives provide enough performance
to be used for far memory [39]; thereby, DiLOS’ design would
be valid for NVMe drives.
Supporting multiple nodes and fault tolerance. Under
the current DiLOS implementation, a computing node only
supports one memory node, just as in Fastswap and AIFM.
We have not included recovery from a memory node failure

in this work, yet an asynchronous storage backup mecha-
nism [23] or erasure-coding-based replication [77] is one
candidate approach for fault tolerance. Extending DiLOS to
support multiple memory nodes for replication or sharding
is a future research direction.

5.2 Limitations
Since we have built DiLOS based on OSv, DiLOS inherits the
same limitations as OSv. Though OSv is POSIX-compatible
and supports unmodified Linux ELF binaries [33], it lacks
multi-processing APIs such as fork(). However, most mod-
ern applications do not use the fork() system call [5], and
DiLOS supports multi-threading alternatives (pthread) for
multi-core support.

The current DiLOS implementation does not support live
migration. Because it bypasses its hypervisor and directly
stores states (e.g., registered buffers and queue pairs) in the
NIC, migrating the NIC-internal states is challenging. A re-
cent study proposes a modification to the RDMA communi-
cation protocol for migrating NIC-internal states [55]. Once
the proposed modification becomes standard, supporting the
live migration of DiLOS should be straightforward.

6 Evaluation
At the core of our DiLOS lie the following design choices.

• We have employed a unified page table design rather
than Linux’s swap cache design.

• In our revamped paging subsystem, we have intro-
duced novel page fault handler, prefetcher, and page
manager designs that minimize page fault handling
overhead.

• The communication module embraces a share-nothing
principle in order to prevent unexpected delays.

• App-aware guide fine-tunes performancewith insights
from application semantics.

How does our DiLOS fare in comparison to existing sys-
tems? In this section, we answer the question in the follow-
ing order. First, we evaluate the cost of paging in terms of
throughput and latency against Fastswap (§6.1). The work-
load we use here is sequential read and write. Second, we use
simple benchmarks and real-world applications to compare
performance against Fastswap and AIFM, as AIFM delivers
the best performance among existing systems (§6.2). Finally,
we demonstrate the performance improvements that app-
aware guides deliver (§6.3).
Testbed. We set up a computing node and a memory node
connected with a 100GbE RoCE cable. Each node has an
Intel Xeon CPU E5-2670 v3 2.30GHz, DDR4 RAM, and a
Mellanox ConnectX-5 EDR + 100GbE card (CX556A). DiLOS
use QEMU 4.2.1 and Mellanox OFED 5.0 on top of Ubuntu
18.04 and Linux kernel 4.15. Both Fastswap and AIFM run on
Ubuntu 18.04 and Mellanox OFED 4.6 for compatibility, but
their Linux kernel versions are 4.11 and 5.0, respectively. We
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Read Write

Fastswap 0.98 0.49
DiLOS with no-prefetch 1.24 1.14
DiLOS with readahead 3.74 3.49
DiLOS with trend-based 3.73 3.49

Table 2. Throughputs of sequential read and write (GB/s).

confirm that both OFED versions of 4.6 and 5.0 show almost
identical performance in the perftest utility [58]. To vary
available memory in computing nodes, we use QEMU’s m op-
tion for DiLOS, LXC container for Fastswap, and kCacheGBs
constant for AIFM. Throughout §6, memory nodes use 2MB
huge pages and run without offloading features for a fair
comparison. We run the same workload five times for each
experiment and report the average.
Presentation. In all experiments, we label results from Di-
LOSwithout a prefetcher, with the readahead prefetcher [28],
and with the Leap’s trend-based majority prefetcher [49] as
no-prefetch, readahead, and trend-based, respectively.
DiLOS with the app-aware guided prefetcher or guided pag-
ing is marked as app-aware.

6.1 Cost of Paging
The goal of this subsection is to evaluate the basic perfor-
mance, namely, throughput and latency of the paging sub-
system under sequential read and write. The workload first
allocates and populates 20GB of memory and then reads or
writes the region with 4KB strides. We use 2.5GB (12.5%) of
local cache for all systems.
Throughput from sequential read and write. Table 2
shows read and write throughputs of DiLOS and Fastswap.
DiLOS shows superior performance compared to Fastswap
in all configurations. DiLOS without prefetchers shows 26%
and 134% higher read and write throughputs than Fastswap.
With prefetchers, DiLOS further hides network and hardware
latencies. The readahead prefetcher enhances DiLOS’ read
and write throughput by about 3.0× and 3.1×, respectively.
We presume the drastic performance improvement mainly
comes from two design choices in DiLOS; reduced latency
in page fault handling and smaller numbers of minor page
faults while prefetching. Next, we analyze the latency and
minor page faults in detail.
Latency breakdown. Figure 6 shows the latency break-
down of the page fault handler in DiLOS and Fastswap. We
added a bar graph for Fastswap without reclamation in order
to highlight the increased latency from direct reclamation.
The main reduction of DiLOS comes from page allocation
and reclamation. The reduction in page allocation is as ex-
pected, for DiLOS got rid of the swap cache. Fastswap is
designed to hide reclamation time to asynchronous RDMA
requests using offloaded reclaim, but not all reclamation are
offloaded. DiLOS, on the other hand, succeeds in completely

0 2 4 6

Fastswap
(no reclamation)

Fastswap
(average)

DiLOS

`s

Exception+Handler Page Table Walk Swap Cache / Page Alloc
Issue RDMA Request RDMA Fetching Reclamation Etc.

Figure 6. Latency breakdown of DiLOS and Fastswap during
sequential read. Prefetch is turned off for both.

Major Minor Total

Fastswap 655,737 4,587,164 5,242,901
DiLOS with no-prefetch 5,242,880 - 5,242,880
DiLOS with readahead 655,358 3,167,233 3,822,591
DiLOS with trend-based 655,356 3,252,667 3,908,023

Table 3. Number of page faults during sequential read.

hiding the reclamation time, and thus we see no reclama-
tion time in Figure 6. Overall, DiLOS reduces the page fault
handling latency by about 49%.
Number of page faults. Table 3 shows the numbers of
major and minor page faults while executing the sequential
read workload. Without prefetching, DiLOS has as many
major faults as Fastswap’s major and minor combined. With
prefetching enabled, DiLOS shows similar numbers of major
faults to Fastswap. DiLOS’ prefetchers update page table
entries directly and, in turn, incur about 25% fewer minor
page faults than Fastswap.
The results confirm that faster page fault handling and

fewer minor page faults are the main reasons that DiLOS
performs better than Fastswap.

6.2 Performance under Diverse Workloads
In this subsection, we use simple benchmarks (quick sort,
k-means clustering, and compression) and real-world appli-
cations (data analytics, graph processing, and in-memory
key-value store) to compare DiLOS to Fastswap and AIFM.

For a fair comparisonwith AIFM, which uses TCP, we have
added 14,000 cycles of delay after each RDMA completion2.
In these cases, we use the Linux’s readahead prefetcher and
label it DiLOS-TCP.

Since AIFM requires C++ programming language and ap-
plication porting, we compare DiLOS to AIFM only with
applications from their publicly available code: Snappy com-
pression (Figures 7(c) and 7(d)) and DataFrame (Figure 8).

2In our testbed, wemeasured AIFM’s TCP and RDMA 4KB read performance
and saw that AIFM’s TCP is 14,000 cycles slower than RDMA.
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Figure 7. Completion time of simple benchmarks. Lower is better.
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Figure 8. Completion time of the NYC taxi workload on
DataFrame. Lower is better.
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Figure 9. GAPBS processing time. Lower is better.

Simple benchmarks. We begin with quicksort, k-means
clustering, and compression workloads. The quicksort work-
load allocates a vector of 2048M random integer numbers (to-
tal 8GB) and sorts themwith C++’s std::sort function. The
k-means clusteringworkload uses Scikit-learn [52] to classify
randomly generated 15M integers into 10 clusters. We use
Python 3.6, Numpy 1.13, and Scikit-learn 0.19. They are the
default versions provided by Ubuntu 18.04. The last workload
performs in-memory compression and decompression using
Snappy library version 1.1.8 [21]. Just as in AIFM work [60],
we use sixteen 1GB files for compression and thirty 0.5GB
files for decompression.

Figure 7(a) shows the quicksort result. Fastswap’s comple-
tion time increases by 39%, as the local cache size decreases
from 100% to 12.5%. DiLOS fares better with only a 12% in-
crease in completion time. With 12.5% local memory, DiLOS
shows up to 1.39× better performance than Fastswap.
Figure 7(b) shows the completion time of the k-means

algorithm. Reducing the local memory has a bigger impact
on the completion time than in the quick sort case. The
k-means clustering algorithm exhibits much irregular mem-
ory access patterns, stressing the slow page reclamation for
evicting pages than the quicksort workload; therefore, Di-
LOS shows much higher performance improvement in the

k-means workload. With 608MB of local cache (12.5%), Di-
LOS boosts the performance of the k-means algorithm up to
2.71× compared to Fastswap.

Figures 7(c) and 7(d) show performance from Snappy com-
pression and decompression. Since both workloads have
sequential memory access patterns, prefetchers hide net-
work latency. When the available local cache size is lim-
ited (12.5%), AIFM has better performance than the other
systems. Compared to AIFM, DiLOS with prefetchers has
only a 7-9% slowdown, and DiLOS with TCP has a 17-23%
slowdown, while Fastswap has a 35-40% slowdown. AIFM’s
good performance is due to its multi-threaded prefetcher
that runs in background and enables almost perfect overlap-
ping of computation and networking. However, when the
computing node has enough memory (e.g., 50% and 100%),
AIFM tends to be similar to or slower than DiLOS because,
when dereferencing pointers, AIFM needs to execute extra
instructions to check whether accessing objects are in local
or remote memory. While AIFM requires application modi-
fications, DiLOS delivers reasonable performance without
application modification.
Data analytics. For real-world applications, we have listed
data analytics, graph processing, and in-memory key-value
store applications. Data analytic libraries are commonly
used in data science and machine learning. We use the C++
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DataFrame library [50] available in AIFM’s repository [59].
We also employ the same data-set offered by AIFM, the New
York City taxi trip analysis workload [30]. In our testbed
configuration, the workload requires 40GB of memory, and
thereby we limit the available memory on the computing
node to 20GB (50%), 10GB (25%), and 5GB (12.5%).

Figure 8 shows the total completion times of all three sys-
tems. When the local cache in a computing node is large
enough (100%), AIFM has 50-83% slower performance than
the other systems. DiLOS, even with the TCP emulation de-
lay, has 14% better performance than AIFM, and with RDMA,
the gap increases up to 54%.
The DataFrame workload has spatial locality, if not per-

fect as in sequential read workload. The completion times of
AIFM and DiLOS increase slightly as the available memory
decreases, while that of Fastswap more than doubles. The
results demonstrate that our paging-based memory disag-
gregation delivers comparable performance to AIFM for the
NYC taxi workload.
Graph processing. To evaluate DiLOS on a multi-threaded
workload, we use GAPBS (GAP Benchmark Suite) [7] of the
latest version 1.4. The workload runs two graph process-
ing algorithms—PageRank (PR) and betweenness central-
ity (BC)—with the Twitter data-set [37]. The total working
set of the workload is 17GB. The data access pattern of be-
tweenness centrality is more random than PageRank, as it
traverses one more indirection through tables. For all exper-
iments, the number of threads is set to 4.
Figures 9(a) and 9(b) show GAPBS processing time of

Fastswap and DiLOS. When a computing node has enough
memory (50% and 100%), DiLOS has a longer completion time
of PageRank than Fastswap due to OSv’s synchronization
overhead. As OSv is not asmature or widespread as Linux, we
believe this performance penalty to be alleviated over time.
Under common memory-constrained settings (e.g., 12.5%)
in DDCs, DiLOS shows up to 76% higher performance than
Fastswap in betweenness centrality computation.
In-memory key-value store. In-memory key-value store
applications use pointer-based data structures (e.g., hash ta-
bles and linked lists), and they have highly irregular memory
access patterns, impacting the effectiveness of a prefetcher.
We use Redis [61], a popular in-memory key-value store, and
run GET and LRANGEworkloads using Redis’s benchmark tool
redis-benchmark [38]. We use Redis 6.2.4, the latest stable
version at the time of our evaluation.

To represent a memory-intensive GET workload in a data-
center, we run a workload generator with a data-set similar
to Facebook’s photo-serving server [27]. Since the GET re-
quests dominate most key-value stores [3], we focus on GET
serving performance with three workloads of different data
sizes. Before measurement, we fully populate the key-space
of the Redis server with 4KB, 64KB, and mixed-sized data,
respectively. The working set size is approximately 20GB.

While 4KB and 64KB workloads consist of fixed-size data, the
mixed workload has six equally distributed data sizes —4KB,
8KB, 16KB, 32KB, 64KB, and 128KB—which represent data
sizes of more than 80% of objects in the Facebook’s photo
server. Finally, we send GET queries with random keys 4M,
250K, and 396K times (the same number as the key-space)
with redis-benchmark.

The evaluation results from GET workloads are in Fig-
ures 10(a) to 10(c). When an object size is 4KB, the object
fits into a single page, and thus the randomness of the next
memory access increases. This weakens the effectiveness of
a prefetcher, as shown in Figure 10(a). On the other hand,
as the object size grows, the object stretches over multiple
contiguous pages. Next pages to fetch become predictable
in such a case, making prefetchers more effective - in the
best case (trend-based on 64KB workload), the throughput
is 63% higher than no-prefetch (Figures 10(b) and 10(c)).

The LRANGE query returns a set of elements from a list. It
is heavily used to deal with sequential data such as timelines
or homepage feeds in social network services [26, 63]. We
evaluate LRANGE_100 performance from redis-benchmark,
which retrieves the front 100 elements from a list. Vanilla
redis-benchmark evaluates LRANGE query performancewith
only one list, which is not realistic in modern datacenters.
We have modified the benchmark to populate and query 100
thousand separate lists. To populate these lists, we randomly
pushed 20 million elements to lists so that each list contains
200 elements on average, using about 22GB of memory. Then
we ran the LRANGE query 100K times.

For all configurations of available localmemory, GET queries
with different data sizes, and LRANGE queries for varying-
length lists in Figure 10, DiLOS outperforms Fastswap. Di-
LOS, even without any prefetcher, has 1.37-1.52× higher
throughput than Fastswap under memory-constrained con-
ditions (12.5%). DiLOS with general-purpose prefetchers
shows up to 2.51× higher throughput than Fastswap. General-
purpose prefetchers improve DiLOS’ performance further on
GET workloads. DiLOS with trend-based enhances the Re-
dis throughput by 1.63× from no-prefetch. However, these
general-purpose prefetchers fare no better for LRANGE work-
loads where the memory access pattern is very irregular
than in the case with no prefetching. Both prefetchers gain
no performance gain over DiLOS-no-prefetch.
They are fundamentally sequential in their prefetching,

diverging only in the amount of prefetching data and timing.
For structured yet non-sequential data traversals, we need
application-level information about the data layout.

6.3 Improvement from App-Aware Guides
In Figure 10(d), we have seen the limitations of prefetchers
where data access is not sequential. The LRANGE query uses a
quicklist data structure, which stores strings in a linked list of
ziplists [66]. We have built a prefetching guide that traverses
the quicklist and prefetches its elements in a way similar
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Figure 10. Redis’s request handling throughput under GET and LRANGE workloads. Higher is better.
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to Figure 5. Figure 11 shows the details of our prefetcher
for the LRANGE query quicklist. When a page fault for PG#1
takes place, the guide places subsequent prefetching calls. It
first calls for a subpage prefetching to Node#1, and examines
Node#1’s ziplist. Then it issues page fetching commands for
PG#2, PG#3, and PG#4 where the next node resides and the
data of ziplist#1 occupies. Also, it issues a fetch for a subpage
PG#2 for Node#2. Since the node’s size is much smaller than
a full page, the subpage arrives ahead of the full page from
the first page fault. The prefetcher uses the node’s values to
fetch its ziplist (Ziplist #1) and the next node (Node #2).
App-aware guides are applicable not only in prefetching

but also in network bandwidth reduction. Below we present
an app-aware prefetcher for Redis and guided paging in an
allocator for bandwidth reduction.
App-aware prefetcher for Redis. Above, we have pre-
sented a prefetching guide for the LRANGE query. We also
have designed a guide for the GET query. To handle GET
queries, Redis uses the Simple Dynamic Strings (SDS) li-
brary [62]. Redis’s SDS consists of a header and data fol-
lowed by a termination character. The length information
is helpful for the prefetcher to decide the number of pages
to prefetch. When a page fault occurs during a GET request,

GET (mixed) LRANGE

99th 99.9th 99th 99.9th

Fastswap 10.0 11.0 25.8 34.3
DiLOS with no-prefetch 6.2 7.6 18.0 20.8
DiLOS with readahead 3.0 4.0 18.0 20.8
DiLOS with trend-based 3.0 4.0 18.0 20.0
DiLOS with app-aware 3.0 4.0 14.6 18.4

Table 4. Tail latency of GET (mixed) and LRANGEworkloads
with 2.5GB local memory (millisecond).

the prefetcher reads the header part first and uses its length
information to fetch the exact number of pages.

The app-aware prefetcher for GET and LRANGE is written in
only 275 lines of C code and compiled with the Redis source.
It includes four handlers for subpage prefetching and four
hooker functions for application information gathering. Note
that we need not modify the Redis main code for the prefetcher.

In Figure 10 and Table 4, app-aware indicates the through-
put and tail latency of DiLOS with the app-aware prefetcher.
For GET workloads, the app-aware prefetcher performs on
par with other prefetchers. For the LRANGEworkload, the app-
aware prefetcher outperforms the general-purpose prefetch-
ers by 62% and reduces 99% tail latency by 18%. Overall, the
app-aware prefetcher has 2.21× higher throughput and 28%
lower 99% tail latency than Fastswap.
Guided paging for bandwidth reduction. We use Redis
again to demonstrate the utility of the guided paging in band-
width reduction as presented in §4.4. When Redis handles
GET queries for objects in remote memory, we should avoid
IO amplification and fetch only subpages of the objects.
The original mimalloc uses a list to track freed chunks.

We modify the mimalloc code to use bitmaps to track freed
chunks. When GET queries are issued, the modified mimalloc
refers to the bitmaps and only fetches allocated subpages.
For the GET workload used in the evaluation, we use the

SET operations to populate Redis’s key-space (128 M keys
with 128 bytes values) and the DEL operations to delete ran-
domly about 70% of the key-space. The DEL operations leave
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Figure 12. Bandwidth consumption during DEL (before 40
mins) and GET (after 40 mins) operations. Lower is better.

pages with free memory chunks. We limit the available mem-
ory to 2.5 GB, about 25% of memory in use after DEL opera-
tions. We have found that vectorized RDMA has a significant
slowdown when its vector is longer than three. Therefore,
the guide constructs a vector whose length is at most three.
Figure 12 shows network bandwidth consumption dur-

ing DEL and GET operations. The guided allocator reduces
bandwidth consumption by 12% for DEL on average and 29%
for GET operations. During the DEL operations, page-internal
fragmentations take place, and the vectorized paging kicks
in to save network bandwidth.

7 Related Work
Memory disaggregation systems. Infiniswap first intro-
duced kernel-based memory disaggregation using a swap
device [23], and the following works [2, 39, 49] enhance the
swapping performance via frontswap design [46]. Remote
regions is a kernel-based memory disaggregation system,
which uses a file abstraction represented via file (read/write)
ormemorymapping (mmap) [1]. LegoOS proposes a split ker-
nel model, which disseminates conventional kernel features
to loosely-coupled monitors running on each hardware[64].

On the other hand, user-level systems expose memory dis-
aggregation APIs to applications. FaRM provides a lock-free
RDMAAPI for fast access to remote memory [16], and CoRM
extends FaRM to perform memory compaction [67]. Using
FaRM or CoRM for disaggregated memory requires signif-
icant source code modifications of applications since they
have custom APIs. Semeru [72], MemLiner [73], AIFM [60],
and Carbink [77] preserve the language’s standard APIs to
reduce the modifications. Semeru and MemLiner implement
memory disaggregation functions in JVM and allow the run-
ning of unmodified Java applications. AIFM and Carbink
provide C++ standard-like far memory interfaces. SemSwap
passes user-level semantics to the kernel to consolidate them
onto the same physical pages [15].

Many memory disaggregation systems provide fault toler-
ance regardless of the kernel-based or user-level system. To
address a remote machine failure, FaRM replicates the same

data across multiple memory nodes [16]. Infiniswap writes
replicated data onto the local block disk asynchronously [23].
Hydra [41] and Carbink [77] use erasure-coding to reduce
memory overheads from replications.
Researchers also propose hardware designs for memory

disaggregation. Shoal introduces a new circuit switch-based
networking architecture to accommodate high-density dis-
aggregated nodes [65]. CacheCloud discusses that a 400 Gb/s
network fabric will allow hundreds of ns latency to access re-
mote nodes, which is comparable to the latency betweenCPU
and memory in a local node [69]. Aquila is a custom ASIC-
based ultra-low latency datacenter network fabric which
supports remote memory access as well as traditional traf-
fic [20]. Kona proposes new hardware primitives for remote
memory access at cache-line granularity [68]. DirectCXL
enables remote memory access via load/store instructions
without page faults via CXL interconnect [22].
Library operating systems and specialization. LibOSes
have emerged in various domains. To take full advantage of
hardware features, Dune [8] allows applications to directly
perform privileged operations such as exception handling
and virtual memory management. Arrakis [53] and IX [9]
implement networking stacks in libraries to provide high I/O
performance. Graphene focuses on runningmulti-process ap-
plications with a limited number of system calls for narrower
attack surfaces [71], and Graphene-SGX runs Graphene on
an enclave [14]. Unikernel is a branch of LibOS that adopts
a single-address-space design and targets virtual machine
environments [44, 45]. In succession to the first introduction
of the unikernel, POSIX-compatible unikernels [32, 34, 36, 40,
51, 57] and language-based unikernels [4, 13, 18] have been
proposed in the literature. LibOS has also acted as a mean
for specializations in many contexts, including NFV [35, 48],
instant booting [47, 74], enclave [6, 14], and HPC [40].
Besides LibOSes, general-purpose OSes are also evolv-

ing to enable kernel specialization. SPIN proposes new OS
architecture to safely extend kernel features via type-safe
language [10]. Exokernel allows applications to control hard-
ware in specialized ways using low-level interfaces [17].
Linux also opens opportunities for safe specialization via
eBPF [31]. BMC uses the eBPF subsystem to accelerate Mem-
cached via pre-stack processing in the kernel [19]. XRP hooks
NVMe driver codes via eBPF and offloads storage functions
to the kernel [76].

8 Conclusion
In this paper, we review the costs of the kernel-based mem-
ory disaggregation systems and present DiLOS3, an efficient
paging subsystem based on LibOS for memory disaggrega-
tion. To hide the costs, it specializes the kernel data-path for

3This work extends the initial design from our workshop paper and adds
detailed evaluations. Guided paging for bandwidth reduction is a new case
study of specialization, previously not in the workshop paper [75].

179



EuroSys ’23, May 9–12, 2023, Rome, Italy Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon

memory disaggregation and uses user-space semantics to
augment their behavior. DiLOS delivers higher performance
than both the user-level approach (54%) and the kernel-based
approach (124%) on a real-world workload. Compared with
DiLOS’ default version, DiLOS with app-aware guides shows
62% higher throughput on range queries and consumes 29%
lower bandwidth on GET queries in Redis.
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A Artifact Appendix
A.1 Abstract
This artifact includes DiLOS, its applications, evaluation
scripts, and data-sets used for evaluations. Our GitHub repos-
itory 4 provides instructions, source codes, scripts, and data-
sets for evaluations.

A.2 Description & Requirements
A.2.1 How to access. In our GitHub repository, DiLOS’
codes and evaluation workloads are in the main branch.
Fastswap’s codes and workloads are in the fastswap branch.
In the repository’s release section, the data-sets used for
workloads are available.

A.2.2 Hardware dependencies. DiLOS requires at least
two nodes (one is for a compute node and the other one is
for a memory node) which are equipped with Mellanox’s
ConnectX-5 NICs. The two nodes are directly connected via
a 100Gbe link. The nodes should have enough amount of
memory/storage to load evaluation workloads (about 40GB
of memory and 500GB of storage).

A.2.3 Software dependencies. DiLOS requires Ubuntu
18.04 LTS for evaluation. The artifact provides installation
scripts for the other dependencies (kernel, VMM, OFED, etc.).

A.2.4 Benchmarks. All data-sets are available in the re-
lease section of our GitHub repository. The artifact also pro-
vides downloading and extracting scripts for the data-sets.

A.3 Setup
The artifact provides a README file for setup. We recom-
mend following instructions in the file.

A.4 Evaluation workflow
A.4.1 Major Claims.

• (C1): DiLOS achieves a higher (compared with Fastswap)
or similar (compared with AIFM) performance of state-
of-the-art systems for the simple and real-world appli-
cations. This is proven by the experiment (E1, E2, E3, E4,
E5, E6, E7) described in §6.2.

• (C2): DiLOS’ app-aware prefetcher achieves 62% higher
performance than general-purpose prefetchers for LRANGEs.
This is proven by the experiment (E7) described in §6.3

• (C3): DiLOS’ app-aware guided paging reduces band-
width consumption by 12% for DEL on average and 29%
for GET operations. This is proven by the experiment
(E8) described in §6.3

A.4.2 Experiments.
Experiment (E1): [Quicksort]: This experiment evaluates Di-
LOS’ performance under quicksort workload (Figure 7(a))
[How to]
Run ./scripts/bench-quicksort.sh on the compute node.
4https://github.com/ANLAB-KAIST/dilos

[Results]
The results will appear in $HOME/benchmark-out/quicksort/
<DATETIME-OF-EVALUATION> directory.

Experiment (E2): [K-Means]: This experiment evaluates Di-
LOS’ performance under k-means workload (Figure 7(b))
[How to]
Run ./scripts/bench-kmeans.sh on the compute node.
[Results]
The results will appear in $HOME/benchmark-out/kmeans/
<DATETIME-OF-EVALUATION> directory.

Experiment (E3): [Compression and Decompression]: This
experiment evaluates DiLOS’ performance under snappy com-
pression and decompression workload (Figures 7(c) and 7(d))
[How to]
Run ./scripts/bench-snappy.sh on the compute node.
[Results]
The results will appear in $HOME/benchmark-out/snappy/
<DATETIME-OF-EVALUATION> directory.

Experiment (E4): [Dataframe]: This experiment evaluates
DiLOS’ performance under Dataframe workload (Figure 8)
[How to]
Run ./scripts/bench-dataframe.sh.
[Results]
The results will appear in $HOME/benchmark-out/dataframe/
<DATETIME-OF-EVALUATION> directory.

Experiment (E5): [GAPBS]: This experiment evaluates Di-
LOS’ performance under GAPBS workload (Figure 9)
[How to]
Run ./scripts/bench-gapbs.sh on the compute node.
[Results]
The results will appear in $HOME/benchmark-out/gapbs/
<DATETIME-OF-EVALUATION> directory.

Experiment (E6): [Redis]: This experiment evaluates DiLOS’
performance under redis workload (Figure 10)
[How to]
Run ./scripts/bench-redis.sh on the compute node.
[Results]
The results will appear in $HOME/benchmark-out/redis/
<DATETIME-OF-EVALUATION> directory.

Experiment (E7): [Redis Bandwidth]: This experiment evalu-
ates DiLOS’ bandwidth consumption under Redis workload (Fig-
ure 12)
[How to]
Run ./scripts/bench-redis-sg.sh on the compute node.
[Results]
The results will appear in $HOME/benchmark-out/redis-sg/
<DATETIME-OF-EVALUATION> directory.
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