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1 INTRODUCTION
Resource disaggregation is a new hardware and system paradigm
to split computation, memory, and storage into individual resource
pools. Compared with the traditional single machine design, re-
source disaggregation allows independent scaling and managed
grouping of hardware resources beyond the boundary of a single
machine. It is a key driver to solve the low resource utilization [2]
and to hide intermittent hardware failures [13, 14] in cloud systems.
Cloud service providers are building disaggregated data centers
(DDC) to take full advantage of resource disaggregation [8].

Memory disaggregation puts CPUs and memory in physically
separate nodes. CPU nodes have small local memory for caching
pages from remote memory nodes. Increased complexity of dis-
aggregated resource management raises questions such as: “How
should we fetch and evict remote pages in order to utilize local
memory efficiently?” and “How should we prefetch in order to hide
network latency?” There are a myriad of cloud applications and
they have different requirements for the questions.

Unikernels are library operating systems where the kernel and
an application run in a single address space under privileged mode
(ring-0) [5–7, 9, 10]. Unikernels bring many advantages to memory
disaggregation: remote paging without mode switching and ease
of application-specific customization. Remote pagingis a widely
used disaggregated memory management technique that swaps in
remote pages and out local pages using a memory management
unit (MMU) [1, 8, 12]. Because accessing an MMU requires privi-
leged mode, traditional OSes must switch modes via a slow system
call. In unikernels, on the other hand, applications access the MMU
directly and avoid overhead from mode switching. Another ad-
vantage of unikernels is ease of customization for its application.
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Figure 1: System overview

Because a unikernel serves only one application, developers are
able to customize the unikernel without concerns over side effects
to other applications. Applications freely set their own resource
management policies. Moreover, unikernels allow applications to
drive their own policies with full knowledge of their memory usage
patterns. Our goal of this work is to optimize remote paging using
unikernels in DDCs.

Unikernel-based memory disaggregation. We built a disaggre-
gated memory system in an actively developing unikernel, OSv [7].
Figure 1 shows a system overview of modules in a compute node.
An OSv kernel, linked with an application, runs on QEMU. It inter-
acts with host Linux which runs as a hypervisor. We use RDMA
over Infiniband as an efficient data path between a compute node
and a memory node. Compared to TCP/IP, RDMA has a hardware
support for fetching contiguous memory larger than MTU. This en-
ables an efficient exchange of pages between nodes. We add RDMA
frontend and backend drivers to the system to use RDMA. The
data path (thick arrow) bypasses complex kernel and virtualization
layers, directly communicating with an RDMA NIC. Hypervisor
exposes a control path (thin arrow) via virtualized interfaces, and
the interfaces are redirected to applications through our unikernel.
We redesign the OSv’s memory system to evict and fetch pages
between a compute node and a memory node. We add an RDMA
mempool manager to manage local pages, a page fault handler to
swap in remote pages, and a background thread to swap out local
pages.

Application-driven prefetching. A unikernel has only one applica-
tion, which lies in the same address space, and communicates with
it via low overhead function calls. It allows the kernel to ask its
application to drive kernel’s functionalities. In this work we demon-
strate an application-driven prefetcher as an example scenario. The
application-driven prefetcher uses the application’s domain knowl-
edge to establish an efficient prefetching policy. Our OSv unikernel
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interacts with the prefetcher via upcalls. When a page fault hap-
pens, OSv’s page fault handler calls the application-level prefetcher.
The application-level prefetcher determines which pages to access
and informs the page fault handler about the decision to fetch those
pages.

2 CASE STUDY: REDIS
To show the effectiveness of our approach, we conduct a case study
of Redis, a popular in-memory data structure store [11]. In appli-
cations such as Redis, the memory access pattern is highly un-
predictable, for it is only known upon request arrivals. Below we
demonstrate the performance improvement our application-driven
prefetcher delivers in Redis workloads. The prefetcher decides
which pages to retrieve using hints from Redis’s data structures.

Accelerating a prefetcher for Redis in a unikernel. Redis uses the
Simple Dynamic Strings (SDS) library to store keys and values.
Redis’s SDS consists of a header and data followed by a terminal
character. The prefetcher uses the length information in the header
to decide the number of pages to retrieve.

Another use case of the application-driven policy is prefetch-
ing Redis objects from range queries. Redis supports an LRANGE
operation which returns a set of objects from a list specified by
the range operator. For example, LRANGE my_list 0 100 returns
objects from index 0 to 100 in my_list. The range parameter is a
good hint for the number of pages to prefetch in order to serve the
range query.

We do not modify the Redis main code but only link 155 LoC of
our application-level prefetcher.

Evaluation. To evaluate the benefits of our unikernel-based mem-
ory disaggregation and application-driven prefetcher, we compare
our prototypes without any prefetcher (OSv w/o prefetcher), with
Linux-like VMA-based sequential prefetcher [4] (OSv w/ sequen-
tial prefetcher), and with an application-driven prefetcher (OSv w/
app-driven prefetcher) to the state-of-the-art disaggregated memory
system, Infiniswap [1]. Figure 2 shows the performance improve-
ments of our unikernel-based disaggregated memory system with
an application-driven prefetcher under GET workload and LRANGE
workload. The GET workload has six equally distributed data sizes
—4KB, 8KB, 16KB, 32KB, 64KB, and 128KB—that represent data sizes
of more than 80% of objects in the Facebook’s photo servers [3], and
the LRANGE workload consists of range queries over 100 thousand
distinct lists that have 200 elements in average. Bothworkloads have
a working set of about 20GB big. We evaluate the performance of
Redis with 100% (20GB+), 50% (10GB), 25% (5GB), and 12.5% (2.5GB)
local memory of the working set.

The result shows that two notable points. First,OSvw/o prefetcher
outperforms Infiniswap under all workloads and memory configu-
ration (up to 2.1× higher throughput and up to 4.9× better 99th tail
latency). It is mainly due to the fast, simple IO path of unikernel and
our efficient implementation of fetching remote pages. Second, OSv
w/ app-driven prefetcher outperforms OSv w/ sequential prefetcher
especially under the LRANGE workload. Under simple GET work-
loads, there is little difference among prefetchers. Given complex
LRANGEmemory accesses, on the other hand, our application-driven
prefetcher outperforms the sequential prefetcher (up to 1.7×). The
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Figure 2: Redis’s request handling throughout (requests per
second) under GET and LRANGE workloads with 20GB+, 10GB,
5GB, 2.5GB local memory. Each workload has about 20GB of
working set. Higher is better.

application-driven prefetcher uses its application knowledge to
improve performance, while the sequential prefetcher degrades
performance with wrong decisions. Overall, OSv w/ app-driven
prefetcher with 2.5GB local memory is up to 75% faster than Infin-
iswap with even 10GB local memory. Our system is more effective
when its local memory is highly limited (2.5GB). By adding only 155
LoC of a prefetcher, it shows a 2.9× higher throughput compared
to Infiniswap.
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