
Accelerating Disaggregated Data Centers Using Unikernel
Wonsup Yoon

KAIST
wsyoon@kaist.ac.kr

Jinyoung Oh
KAIST

jinyoungoh@kaist.ac.kr

Sue Moon
KAIST

sbmoon@kaist.edu

Youngjin Kwon
KAIST

yjkwon@kaist.ac.kr

CCS CONCEPTS
• Networks → Cloud computing.

KEYWORDS
Disaggregated data center, Unikernel, RDMA
ACM Reference Format:
Wonsup Yoon, Jinyoung Oh, Sue Moon, and Youngjin Kwon. 2020. Ac-
celerating Disaggregated Data Centers Using Unikernel. In ACM Special
Interest Group on Data Communication (SIGCOMM ’20 Demos and Posters),
August 10–14, 2020, Virtual Event, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3405837.3411397

1 INTRODUCTION
Resource disaggregation is a new hardware and system paradigm
to split computation, memory, and storage into individual resource
pools. Compared with the traditional single machine design, re-
source disaggregation allows independent scaling and managed
grouping of hardware resources beyond the boundary of a single
machine. It is a key driver to solve the low resource utilization [2]
and to hide intermittent hardware failures [13, 14] in cloud systems.
Cloud service providers are building disaggregated data centers
(DDC) to take full advantage of resource disaggregation [8].

Memory disaggregation puts CPUs and memory in physically
separate nodes. CPU nodes have small local memory for caching
pages from remote memory nodes. Increased complexity of dis-
aggregated resource management raises questions such as: “How
should we fetch and evict remote pages in order to utilize local
memory efficiently?” and “How should we prefetch in order to hide
network latency?” There are a myriad of cloud applications and
they have different requirements for the questions.

Unikernels are library operating systems where the kernel and
an application run in a single address space under privileged mode
(ring-0) [5–7, 9, 10]. Unikernels bring many advantages to memory
disaggregation: remote paging without mode switching and ease
of application-specific customization. Remote pagingis a widely
used disaggregated memory management technique that swaps in
remote pages and out local pages using a memory management
unit (MMU) [1, 8, 12]. Because accessing an MMU requires privi-
leged mode, traditional OSes must switch modes via a slow system
call. In unikernels, on the other hand, applications access the MMU
directly and avoid overhead from mode switching. Another ad-
vantage of unikernels is ease of customization for its application.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8048-5/20/08.
https://doi.org/10.1145/3405837.3411397

Host

QEMU

OSv
App.
Kernel

Main code Application-driven prefetcher

Background thread
Eviction 
manager

Page fault handlerRDMA mempool manager

Remote PF handler
Prefetcher LRU list

RDMA backend driver

RDMA
frontend driver virtio-rdma RDMA library

RDMA NIC

Device driver & control interface

RDMA
memory region

Free page manager

MMIO & DMA

Local PF handler

Figure 1: System overview

Because a unikernel serves only one application, developers are
able to customize the unikernel without concerns over side effects
to other applications. Applications freely set their own resource
management policies. Moreover, unikernels allow applications to
drive their own policies with full knowledge of their memory usage
patterns. Our goal of this work is to optimize remote paging using
unikernels in DDCs.

Unikernel-based memory disaggregation. We built a disaggre-
gated memory system in an actively developing unikernel, OSv [7].
Figure 1 shows a system overview of modules in a compute node.
An OSv kernel, linked with an application, runs on QEMU. It inter-
acts with host Linux which runs as a hypervisor. We use RDMA
over Infiniband as an efficient data path between a compute node
and a memory node. Compared to TCP/IP, RDMA has a hardware
support for fetching contiguous memory larger than MTU. This en-
ables an efficient exchange of pages between nodes. We add RDMA
frontend and backend drivers to the system to use RDMA. The
data path (thick arrow) bypasses complex kernel and virtualization
layers, directly communicating with an RDMA NIC. Hypervisor
exposes a control path (thin arrow) via virtualized interfaces, and
the interfaces are redirected to applications through our unikernel.
We redesign the OSv’s memory system to evict and fetch pages
between a compute node and a memory node. We add an RDMA
mempool manager to manage local pages, a page fault handler to
swap in remote pages, and a background thread to swap out local
pages.

Application-driven prefetching. A unikernel has only one applica-
tion, which lies in the same address space, and communicates with
it via low overhead function calls. It allows the kernel to ask its
application to drive kernel’s functionalities. In this work we demon-
strate an application-driven prefetcher as an example scenario. The
application-driven prefetcher uses the application’s domain knowl-
edge to establish an efficient prefetching policy. Our OSv unikernel

73

https://doi.org/10.1145/3405837.3411397
https://doi.org/10.1145/3405837.3411397
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3405837.3411397&domain=pdf&date_stamp=2021-09-14


SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA Yoon.et al.

interacts with the prefetcher via upcalls. When a page fault hap-
pens, OSv’s page fault handler calls the application-level prefetcher.
The application-level prefetcher determines which pages to access
and informs the page fault handler about the decision to fetch those
pages.

2 CASE STUDY: REDIS
To show the effectiveness of our approach, we conduct a case study
of Redis, a popular in-memory data structure store [11]. In appli-
cations such as Redis, the memory access pattern is highly un-
predictable, for it is only known upon request arrivals. Below we
demonstrate the performance improvement our application-driven
prefetcher delivers in Redis workloads. The prefetcher decides
which pages to retrieve using hints from Redis’s data structures.

Accelerating a prefetcher for Redis in a unikernel. Redis uses the
Simple Dynamic Strings (SDS) library to store keys and values.
Redis’s SDS consists of a header and data followed by a terminal
character. The prefetcher uses the length information in the header
to decide the number of pages to retrieve.

Another use case of the application-driven policy is prefetch-
ing Redis objects from range queries. Redis supports an LRANGE
operation which returns a set of objects from a list specified by
the range operator. For example, LRANGE my_list 0 100 returns
objects from index 0 to 100 in my_list. The range parameter is a
good hint for the number of pages to prefetch in order to serve the
range query.

We do not modify the Redis main code but only link 155 LoC of
our application-level prefetcher.

Evaluation. To evaluate the benefits of our unikernel-based mem-
ory disaggregation and application-driven prefetcher, we compare
our prototypes without any prefetcher (OSv w/o prefetcher), with
Linux-like VMA-based sequential prefetcher [4] (OSv w/ sequen-
tial prefetcher), and with an application-driven prefetcher (OSv w/
app-driven prefetcher) to the state-of-the-art disaggregated memory
system, Infiniswap [1]. Figure 2 shows the performance improve-
ments of our unikernel-based disaggregated memory system with
an application-driven prefetcher under GET workload and LRANGE
workload. The GET workload has six equally distributed data sizes
—4KB, 8KB, 16KB, 32KB, 64KB, and 128KB—that represent data sizes
of more than 80% of objects in the Facebook’s photo servers [3], and
the LRANGE workload consists of range queries over 100 thousand
distinct lists that have 200 elements in average. Bothworkloads have
a working set of about 20GB big. We evaluate the performance of
Redis with 100% (20GB+), 50% (10GB), 25% (5GB), and 12.5% (2.5GB)
local memory of the working set.

The result shows that two notable points. First,OSvw/o prefetcher
outperforms Infiniswap under all workloads and memory configu-
ration (up to 2.1× higher throughput and up to 4.9× better 99th tail
latency). It is mainly due to the fast, simple IO path of unikernel and
our efficient implementation of fetching remote pages. Second, OSv
w/ app-driven prefetcher outperforms OSv w/ sequential prefetcher
especially under the LRANGE workload. Under simple GET work-
loads, there is little difference among prefetchers. Given complex
LRANGEmemory accesses, on the other hand, our application-driven
prefetcher outperforms the sequential prefetcher (up to 1.7×). The

Infiniswap OSv w/o prefetchers

OSv w/ sequatial prefetcher OSv w/ app-driven prefetcher

0K

5K

10K

15K

20K

25K

30K

20GB+ 10GB 5GB 2.5GB

(a) GET

0K

2K

4K

6K

8K

10K

20GB+ 10GB 5GB 2.5GB

(b) LRANGE

Figure 2: Redis’s request handling throughout (requests per
second) under GET and LRANGE workloads with 20GB+, 10GB,
5GB, 2.5GB local memory. Each workload has about 20GB of
working set. Higher is better.

application-driven prefetcher uses its application knowledge to
improve performance, while the sequential prefetcher degrades
performance with wrong decisions. Overall, OSv w/ app-driven
prefetcher with 2.5GB local memory is up to 75% faster than Infin-
iswap with even 10GB local memory. Our system is more effective
when its local memory is highly limited (2.5GB). By adding only 155
LoC of a prefetcher, it shows a 2.9× higher throughput compared
to Infiniswap.

ACKNOWLEDGEMENT
This researchwas supported by Energy Cloud R&DProgram through
the National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT (2019M3F2A1072211).

REFERENCES
[1] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.

Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’16). USENIX
Association.

[2] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and
Yungang Bao. 2019. Who Limits the Resource Efficiency of My Datacenter: An
Analysis of Alibaba Datacenter Traces. In IEEE/ACM International Workshop on
Quality of Service (IWQoS ’19). ACM.

[3] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and
Harry C. Li. 2013. An Analysis of Facebook Photo Caching. In SOSP (SOSP ’13).
ACM.

[4] Ying Huang. 2017. mm, swap: VMA based swap readahead. https://lwn.net/
Articles/716296/.

[5] IncludeOS. 2020. IncludeOS - Run your application with zero overhead. https:
//www.includeos.org.

[6] Rump kernel community. 2020. Rump Kernels. http://rumpkernel.org.
[7] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,

and Vlad Zolotarov. 2014. OSv—Optimizing the Operating System for Virtual Ma-
chines. In USENIX Annual Technical Conference (ATC ’16). USENIX Association.

[8] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. ACM.

[9] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: Library Operating Systems for the Cloud. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’13). ACM.

[10] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper, Richard
Jones, Orran Krieger, Renato Mancuso, and Larry Woodman. 2019. Unikernels:

74

https://lwn.net/Articles/716296/
https://lwn.net/Articles/716296/
https://www.includeos.org
https://www.includeos.org
http://rumpkernel.org


Accelerating Disaggregated Data Centers Using Unikernel SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA

The Next Stage of Linux’s Dominance. InWorkshop on Hot Topics in Operating
Systems (HotOS ’19). ACM.

[11] Salvatore Sanfilippo. 2020. Redis. https://redis.io.
[12] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A

Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association.

[13] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing
Cloud Computing Hardware Reliability. In ACM Symposium on Cloud Computing
(SoCC ’10). ACM.

[14] G. Wang, L. Zhang, andW. Xu. 2017. What CanWe Learn from Four Years of Data
Center Hardware Failures?. In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’17). IEEE.

75

https://redis.io

	1 Introduction
	2 Case Study: Redis
	References

