
Poster: Designing a Memory Disaggregation System for Cloud
Wonsup Yoon

KAIST
Jisu Ok
KAIST

Sue Moon
KAIST

Youngjin Kwon
KAIST

ABSTRACT
Memory disaggregation is a new datacenter paradigm separating
compute and memory nodes. While memory disaggregation im-
proves memory utilization and scalability, it poses challenges for
cloud applications, particularly in terms of high tail latency. Ex-
isting memory disaggregation systems focus on optimizing the
disaggregation stack, but it does not always guarantee excellent
application performance. We review existing memory disaggrega-
tion and tail-optimized systems and explain their limitations in this
context. We also propose two preliminary solutions: asynchronous
page fault handling and a faulty request classifier. The emulation
result shows that asynchronous page fault handling reduces tail
latencies by 50% compared to synchronous handling.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
memory disaggregation,cloud computing,tail latency
ACM Reference Format:
Wonsup Yoon, Jisu Ok, Sue Moon, and Youngjin Kwon. 2023. Poster: Design-
ing a Memory Disaggregation System for Cloud. In ACM SIGCOMM 2023
Conference (ACM SIGCOMM ’23), September 10, 2023, New York, NY, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3603269.3610854

1 INTRODUCTION
Memory disaggregation is a datacenter design paradigm that de-
composes a computer system into separately managed compute and
memory nodes connected by a fast interconnect such as RDMA. By
dynamically allocating memory resources on demand, it improves
memory utilization, memory scaling across hardware boundaries,
and high availability due to separate hardware fault domains [3].

Yet, for all the benefits, memory disaggregation introduces new
challenges to cloud applications. Cloud applications are vulnerable
to high tail latency. The inherent design of cloud applications, char-
acterized by a fan-out architecture, renders a mere 1% of latency
spikes capable of causing substantial deterioration in user expe-
rience [4]. Under the memory disaggregation setup, any latency
increase from remote memory access calls for attention in applica-
tion performance, particularly for those whose average response
time should stay within a few microseconds.

The main design goal has been designing a high-performance
memory disaggregation stack. Infiniswap first introduced a remote

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3610854

memory paging system [6]. Subsequent studies have lowered pag-
ing latency [1, 10, 14, 19] and avoided paging latency [15, 17, 18].

Nevertheless, we have found out that the existing techniques
used for the high-performance disaggregation stack do not always
lead to good application performance. Our prior work uses syn-
chronous page fault handling to shorten handling latency as much
as possible [19]. However, when it comes to cloud applications,
synchronous handling introduces head-of-line blocking: a request
inducing page faults blocks pending requests without page faults.
The head-of-line blocking of subsequent requests results in higher
latencies, especially at the tail.

In this paper, we seek a new memory disaggregation system
design for tail-sensitive cloud applications. We review existing
systems and their limitations in this scenario. Then, we introduce
our preliminary solutions, possible outcome, and challenges.

2 BACKGROUND AND RELATEDWORK
Memory disaggregation systems. Memory disaggregation is
a system design that splits computing and memory into separate
nodes. Memory disaggregation systems are implemented in many
different ways: as a kernel feature [1, 6, 10, 14, 16, 19] or as a
library feature [15, 17, 18, 20]. However, their objectives are the
same: reducing or avoiding remote memory access latency. To
achieve the objectives, for example, DiLOS [19] and Hermit [14]
eliminate unnecessary tasks in the critical path by handling them
asynchronously. As a result, the average page fault handling latency
is reduced to 3.3 `s in the most recent study [19].
Systems for tail-sensitive cloud applications. General-purpose
OS design is not well suited to tail-sensitive cloud applications. To
achieve lower latencies, researchers have replaced Linux’s stock net-
working stack and scheduler with tail-optimized ones. For network
stack, many systems bypass the kernel to shorten the network data
path and successfully provide microsecond-scale latencies [2, 8, 12].
Another approach is designing a tail-sensitive scheduler. As Zy-
gOS has demonstrated, scheduling algorithms play an essential
role in providing microsecond-scale tail latency with high disper-
sion [13]. It also has introduced scheduling algorithms other than
the partitioned first-come-first-serve (FCFS) model for lowering tail
latency. After ZygOS, Shinjuku has realized preemptive schedul-
ing (processor sharing model) for microsecond-scale requests [7],
Shenango relocates cores in a few microseconds [11], and Persé-
phone has designed an application-ware scheduler using header
information [5].

3 PROBLEM STATEMENT
In this section, we discuss how cloud applications perform on mem-
ory disaggregation setup. Throughout this paper, we focus on a
paging-based memory disaggregation system.
Synchronous page fault handling. One of the techniques for
high-performance memory disaggregation systems is synchronous
page fault handling. If a page fault exception occurs, the exception

1099

https://doi.org/10.1145/3603269.3610854
https://doi.org/10.1145/3603269.3610854
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3610854&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Wonsup Yoon, Jisu Ok, Sue Moon, and Youngjin Kwon

handler issues an RDMA page fetch request and waits upon its
completion by busy polling. This technique provides low page fault
latency. However, we argue that the low page fault latency does
not always result in low request handling latency, especially at the
tail.
Head-of-line blocking. The main disadvantage of synchronous
page fault handling is the head-of-line blocking (HoLB) problem.
In the FCFS scheduler, widely used for cloud applications, requests
with page faults would block subsequent requests in the same queue,
many of which are requests without page faults. Moreover, during
the blocking, the CPU employs busy polling to check completion. It
wastes lots of CPU cycles, even though there are pending requests
ready to be handled.
Existing solutions. HoLB is a well-known problem in the FCFS
scheduler. To mitigate HoLB, cloud systems employ work-stealing
queues or processor sharing. However, none of these systems fun-
damentally solves HoLB in synchronous page fault handling. Work-
stealing queue designs approximate centralized FCFS [7]. Thereby
if the number of ongoing page faults is identical to the number of
worker threads, theHoLB persists. Shinjuku’s preemptive scheduler-
based processor sharing is another way to prevent HoLB, but it has a
limitation: 5 `s preemption frequency. It is too large for scheduling
remote page fault handling, whose latency is 3.3 `s. Increasing the
preemption frequency is also impossible. Higher frequency would
induce high overhead and crashes [5].

4 PRELIMINARY SOLUTIONS
In this section, we introduce our approaches, possible outcomes,
and challenges.
Setup. To estimate possible outcomes, we conduct an experiment
with emulations. We measure throughput and latencies (average,
p50, p95, p99, maximum) of the Redis key-value store with page
fault handling. We emulate the page fault handling by inserting
delays in the Redis server. For values, we use the latency metrics
of DiLOS [19]. We use two kinds of delays: sync delay for synchro-
nous tasks and async delay for asynchronous tasks. Sync delay is
implemented by busy waiting, and async delay employs Redis’s
timer events. For workload, we use GET requests (128 bytes payload
and 1024 key space) generated by a redis-benchmark tool.

4.1 Asynchronous Page Fault Handling
To prevent HoLB, we suggest asynchronous page fault handling.
When a page fault exception occurs on the request handler, the
exception handler issues its page fetch request and yields its context
to another request handler. Later, the page fetch completes, then the
original request handler comes back and executes the remaining
operations. Using this technique, fetching does not block requests
in the pending queue.
Possible outcomes. We model synchronous page fault handling
by inserting sync delay. For asynchronous page fault handling, we
use both delays: sync delay for the synchronous parts (exception,
page request issuing, etc.) and async delay for page fetching. We
also include a version without page faults as an upper bound. Ta-
ble 1 summarizes the evaluation result. Synchronous page fault
handling introduces throughput degradation (15%) and about two

Tput Avg Min P50 P95 P99 Max

no-fault 172K 0.14 0.04 0.14 0.17 0.23 2.27
sync 146K 0.29 0.08 0.27 0.39 0.55 2.48
async 175K 0.15 0.04 0.14 0.19 0.24 2.78

Table 1: Throughput (reqs/s) and latencies (ms) of key-value
stores without page fault handling (no-fault), with synchro-
nous page fault handling (sync), and with asynchronous page
fault handling (async).

times higher P99 latency. Asynchronous page fault handling, on
the other hand, provides P99 latency close to the no-fault version.
Challenges. To realize asynchronous page fault handling, we have
to design a scheduler that can handle exceptions and context switch-
ing in a few microseconds. However, the page fault exceptions are
kernel events, while fast context switching mechanisms (such as
fiber and green thread) are implemented in userspace. Therefore, we
are considering single mode and one address space unikernels [9]
which relay kernel events to the application without huge costs.

4.2 Page Fault Predictor
Another way to reduce HoLB is to categorize requests by processing
time and to put them in distinct queues [5]. It prevents blocking
requests with short processing times by requests with long pro-
cessing times. We are considering a similar approach in memory
disaggregation by predicting page faults. The page fault predictor
determines and separates fault-inducing requests into distinct re-
quest queues. Then, fault-inducing requests do not block requests
without page faults, resulting in lower latencies.
Challenges. However, predicting page faults is a challenging task.
How can we know whether a request causes page fault before pro-
cessing? One of the possible solutions is history-based prediction.
On the key-value store, the most recently accessed key-value pair is
likely to be cached in the compute node and does not incur a page
fault. We can use this characteristic to predict page faults within
requests.

5 CONCLUSION
In this paper, we argue that the existing memory disaggregation sys-
tems are not suited to tail-sensitive cloud applications. To address
this, we suggest two preliminary solutions: asynchronous page fault
handling and page fault prediction. Our emulation study shows
that our approach would enhance performance, namely throughput
and tail latency.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their helpful comments.
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT). (No.
2022R1A2C2009062)

REFERENCES
[1] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-

hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
2020. Can Far Memory Improve Job Throughput?. In Proceedings of the Fifteenth
European Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 14, 16 pages.
https://doi.org/10.1145/3342195.3387522

1100

https://doi.org/10.1145/3342195.3387522

Poster: Designing a Memory Disaggregation System for Cloud ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

[2] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A ProtectedDataplaneOperating System forHigh
Throughput and Low Latency. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 49–
65. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
belay

[3] Sergey Blagodurov, Mike Ignatowski, and Valentina Salapura. 2021. The Time is
Ripe for Disaggregated Systems. https://www.sigarch.org/the-time-is-ripe-for-
disaggregated-systems/.

[4] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (feb 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[5] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias, Boon Thau
Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When Idling is Ideal: Optimiz-
ing Tail-Latency for Heavy-Tailed Datacenter Workloads with PerséPhone. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New
York, NY, USA, 621–637. https://doi.org/10.1145/3477132.3483571

[6] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 649–667. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/gu

[7] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
ières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for
`second-scale Tail Latency. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 345–360.
https://www.usenix.org/conference/nsdi19/presentation/kaffes

[8] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krish-
namurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany)
(EuroSys ’19). Association for Computing Machinery, New York, NY, USA, Article
24, 16 pages. https://doi.org/10.1145/3302424.3303985

[9] Anil Madhavapeddy and David J. Scott. 2014. Unikernels: The Rise of the Virtual
Library Operating System. Commun. ACM 57, 1 (jan 2014), 61–69. https://
doi.org/10.1145/2541883.2541895

[10] Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively Prefetching Remote
Memory with Leap. In 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, 843–857. https://www.usenix.org/conference/atc20/
presentation/al-maruf

[11] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19). USENIX Association, Boston, MA, 361–378.
https://www.usenix.org/conference/nsdi19/presentation/ousterhout

[12] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Kr-
ishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The
Operating System is the Control Plane. In 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 1–16. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/peter

[13] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 325–341. https:
//doi.org/10.1145/3132747.3132780

[14] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam Belay, Qingda Lu, Yiying
Zhang, Miryung Kim, and Guoqing Harry Xu. 2023. Hermit: Low-Latency,
High-Throughput, and Transparent Remote Memory via Feedback-Directed
Asynchrony. In 20th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 23). USENIX Association, Boston, MA, 181–198. https:
//www.usenix.org/conference/nsdi23/presentation/qiao

[15] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020.
AIFM: High-Performance, Application-Integrated Far Memory. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 315–332. https://www.usenix.org/conference/osdi20/presentation/
ruan

[16] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, Carlsbad, CA, 69–87. https://www.usenix.org/conference/
osdi18/presentation/shan

[17] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. 2020.
Semeru: AMemory-DisaggregatedManaged Runtime. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
261–280. https://www.usenix.org/conference/osdi20/presentation/wang

[18] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, Christian
Navasca, Shan Lu, and Guoqing Harry Xu. 2022. MemLiner: Lining up Tracing

and Application for a Far-Memory-Friendly Runtime. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 35–53. https://www.usenix.org/conference/osdi22/presentation/
wang

[19] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon. 2023. DiLOS:
Do Not Trade Compatibility for Performance in Memory Disaggregation. In
Proceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,
266–282. https://doi.org/10.1145/3552326.3567488

[20] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan
Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M. Levy, and Amin
Vahdat. 2022. Carbink: Fault-Tolerant Far Memory. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 55–71. https://www.usenix.org/conference/osdi22/presentation/
zhou-yang

1101

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.sigarch.org/the-time-is-ripe-for-disaggregated-systems/
https://www.sigarch.org/the-time-is-ripe-for-disaggregated-systems/
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/3477132.3483571
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/2541883.2541895
https://doi.org/10.1145/2541883.2541895
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/nsdi23/presentation/qiao
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi20/presentation/wang
https://www.usenix.org/conference/osdi22/presentation/wang
https://www.usenix.org/conference/osdi22/presentation/wang
https://doi.org/10.1145/3552326.3567488
https://www.usenix.org/conference/osdi22/presentation/zhou-yang
https://www.usenix.org/conference/osdi22/presentation/zhou-yang

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Problem Statement
	4 Preliminary Solutions
	4.1 Asynchronous Page Fault Handling
	4.2 Page Fault Predictor

	5 Conclusion
	References

