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ABSTRACT
Memory disaggregation is a new datacenter paradigm separating
compute and memory nodes. While memory disaggregation im-
proves memory utilization and scalability, it poses challenges for
cloud applications, particularly in terms of high tail latency. Ex-
isting memory disaggregation systems focus on optimizing the
disaggregation stack, but it does not always guarantee excellent
application performance. We review existing memory disaggrega-
tion and tail-optimized systems and explain their limitations in this
context. We also propose two preliminary solutions: asynchronous
page fault handling and a faulty request classifier. The emulation
result shows that asynchronous page fault handling reduces tail
latencies by 50% compared to synchronous handling.
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1 INTRODUCTION
Memory disaggregation is a datacenter design paradigm that de-
composes a computer system into separately managed compute and
memory nodes connected by a fast interconnect such as RDMA. By
dynamically allocating memory resources on demand, it improves
memory utilization, memory scaling across hardware boundaries,
and high availability due to separate hardware fault domains [3].

Yet, for all the benefits, memory disaggregation introduces new
challenges to cloud applications. Cloud applications are vulnerable
to high tail latency. The inherent design of cloud applications, char-
acterized by a fan-out architecture, renders a mere 1% of latency
spikes capable of causing substantial deterioration in user expe-
rience [4]. Under the memory disaggregation setup, any latency
increase from remote memory access calls for attention in applica-
tion performance, particularly for those whose average response
time should stay within a few microseconds.

The main design goal has been designing a high-performance
memory disaggregation stack. Infiniswap first introduced a remote
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memory paging system [6]. Subsequent studies have lowered pag-
ing latency [1, 10, 14, 19] and avoided paging latency [15, 17, 18].

Nevertheless, we have found out that the existing techniques
used for the high-performance disaggregation stack do not always
lead to good application performance. Our prior work uses syn-
chronous page fault handling to shorten handling latency as much
as possible [19]. However, when it comes to cloud applications,
synchronous handling introduces head-of-line blocking: a request
inducing page faults blocks pending requests without page faults.
The head-of-line blocking of subsequent requests results in higher
latencies, especially at the tail.

In this paper, we seek a new memory disaggregation system
design for tail-sensitive cloud applications. We review existing
systems and their limitations in this scenario. Then, we introduce
our preliminary solutions, possible outcome, and challenges.

2 BACKGROUND AND RELATEDWORK
Memory disaggregation systems. Memory disaggregation is
a system design that splits computing and memory into separate
nodes. Memory disaggregation systems are implemented in many
different ways: as a kernel feature [1, 6, 10, 14, 16, 19] or as a
library feature [15, 17, 18, 20]. However, their objectives are the
same: reducing or avoiding remote memory access latency. To
achieve the objectives, for example, DiLOS [19] and Hermit [14]
eliminate unnecessary tasks in the critical path by handling them
asynchronously. As a result, the average page fault handling latency
is reduced to 3.3 `s in the most recent study [19].
Systems for tail-sensitive cloud applications. General-purpose
OS design is not well suited to tail-sensitive cloud applications. To
achieve lower latencies, researchers have replaced Linux’s stock net-
working stack and scheduler with tail-optimized ones. For network
stack, many systems bypass the kernel to shorten the network data
path and successfully provide microsecond-scale latencies [2, 8, 12].
Another approach is designing a tail-sensitive scheduler. As Zy-
gOS has demonstrated, scheduling algorithms play an essential
role in providing microsecond-scale tail latency with high disper-
sion [13]. It also has introduced scheduling algorithms other than
the partitioned first-come-first-serve (FCFS) model for lowering tail
latency. After ZygOS, Shinjuku has realized preemptive schedul-
ing (processor sharing model) for microsecond-scale requests [7],
Shenango relocates cores in a few microseconds [11], and Persé-
phone has designed an application-ware scheduler using header
information [5].

3 PROBLEM STATEMENT
In this section, we discuss how cloud applications perform on mem-
ory disaggregation setup. Throughout this paper, we focus on a
paging-based memory disaggregation system.
Synchronous page fault handling. One of the techniques for
high-performance memory disaggregation systems is synchronous
page fault handling. If a page fault exception occurs, the exception
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handler issues an RDMA page fetch request and waits upon its
completion by busy polling. This technique provides low page fault
latency. However, we argue that the low page fault latency does
not always result in low request handling latency, especially at the
tail.
Head-of-line blocking. The main disadvantage of synchronous
page fault handling is the head-of-line blocking (HoLB) problem.
In the FCFS scheduler, widely used for cloud applications, requests
with page faults would block subsequent requests in the same queue,
many of which are requests without page faults. Moreover, during
the blocking, the CPU employs busy polling to check completion. It
wastes lots of CPU cycles, even though there are pending requests
ready to be handled.
Existing solutions. HoLB is a well-known problem in the FCFS
scheduler. To mitigate HoLB, cloud systems employ work-stealing
queues or processor sharing. However, none of these systems fun-
damentally solves HoLB in synchronous page fault handling. Work-
stealing queue designs approximate centralized FCFS [7]. Thereby
if the number of ongoing page faults is identical to the number of
worker threads, theHoLB persists. Shinjuku’s preemptive scheduler-
based processor sharing is another way to prevent HoLB, but it has a
limitation: 5 `s preemption frequency. It is too large for scheduling
remote page fault handling, whose latency is 3.3 `s. Increasing the
preemption frequency is also impossible. Higher frequency would
induce high overhead and crashes [5].

4 PRELIMINARY SOLUTIONS
In this section, we introduce our approaches, possible outcomes,
and challenges.
Setup. To estimate possible outcomes, we conduct an experiment
with emulations. We measure throughput and latencies (average,
p50, p95, p99, maximum) of the Redis key-value store with page
fault handling. We emulate the page fault handling by inserting
delays in the Redis server. For values, we use the latency metrics
of DiLOS [19]. We use two kinds of delays: sync delay for synchro-
nous tasks and async delay for asynchronous tasks. Sync delay is
implemented by busy waiting, and async delay employs Redis’s
timer events. For workload, we use GET requests (128 bytes payload
and 1024 key space) generated by a redis-benchmark tool.

4.1 Asynchronous Page Fault Handling
To prevent HoLB, we suggest asynchronous page fault handling.
When a page fault exception occurs on the request handler, the
exception handler issues its page fetch request and yields its context
to another request handler. Later, the page fetch completes, then the
original request handler comes back and executes the remaining
operations. Using this technique, fetching does not block requests
in the pending queue.
Possible outcomes. We model synchronous page fault handling
by inserting sync delay. For asynchronous page fault handling, we
use both delays: sync delay for the synchronous parts (exception,
page request issuing, etc.) and async delay for page fetching. We
also include a version without page faults as an upper bound. Ta-
ble 1 summarizes the evaluation result. Synchronous page fault
handling introduces throughput degradation (15%) and about two

Tput Avg Min P50 P95 P99 Max

no-fault 172K 0.14 0.04 0.14 0.17 0.23 2.27
sync 146K 0.29 0.08 0.27 0.39 0.55 2.48
async 175K 0.15 0.04 0.14 0.19 0.24 2.78

Table 1: Throughput (reqs/s) and latencies (ms) of key-value
stores without page fault handling (no-fault), with synchro-
nous page fault handling (sync), and with asynchronous page
fault handling (async).

times higher P99 latency. Asynchronous page fault handling, on
the other hand, provides P99 latency close to the no-fault version.
Challenges. To realize asynchronous page fault handling, we have
to design a scheduler that can handle exceptions and context switch-
ing in a few microseconds. However, the page fault exceptions are
kernel events, while fast context switching mechanisms (such as
fiber and green thread) are implemented in userspace. Therefore, we
are considering single mode and one address space unikernels [9]
which relay kernel events to the application without huge costs.

4.2 Page Fault Predictor
Another way to reduce HoLB is to categorize requests by processing
time and to put them in distinct queues [5]. It prevents blocking
requests with short processing times by requests with long pro-
cessing times. We are considering a similar approach in memory
disaggregation by predicting page faults. The page fault predictor
determines and separates fault-inducing requests into distinct re-
quest queues. Then, fault-inducing requests do not block requests
without page faults, resulting in lower latencies.
Challenges. However, predicting page faults is a challenging task.
How can we know whether a request causes page fault before pro-
cessing? One of the possible solutions is history-based prediction.
On the key-value store, the most recently accessed key-value pair is
likely to be cached in the compute node and does not incur a page
fault. We can use this characteristic to predict page faults within
requests.

5 CONCLUSION
In this paper, we argue that the existing memory disaggregation sys-
tems are not suited to tail-sensitive cloud applications. To address
this, we suggest two preliminary solutions: asynchronous page fault
handling and page fault prediction. Our emulation study shows
that our approach would enhance performance, namely throughput
and tail latency.
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