
Host Efficient Networking Stack Utilizing NIC DRAM
Byeongkeon Lee

KAIST
byeongkeonlee@kaist.ac.kr

Donghyeon Lee
KAIST

ldh1083@kaist.ac.kr

Jisu Ok
KAIST

jisu.ok@kaist.ac.kr

Wonsup Yoon
KAIST

wsyoon@kaist.ac.kr

Sue Moon
KAIST

sbmoon@kaist.ac.kr

ABSTRACT
The growth in host resource and network speed is not synchronized,
and the status quo of this imbalance from the network speed of
100∼ Gbps makes the host resource the bottleneck. We categorize
existing body of work to reduce the host burden into the following
three approaches: (1) to eliminate payload copy (zero-copy), (2) to
utilize special-purpose hardware for payload copy, and (3) to offload
protocol to NIC. Each approach, however, has drawbacks. (1) Most
zero-copy methods require application modification. Furthermore,
the application must ensure its buffer is not modified until net-
work I/O is complete. (2) Copy elimination through special-purpose
hardware still uses host memory, consuming considerable memory
bandwidth. (3) The protocol offloaded to NIC has limited flexibility.

We redesign the networking stack placing only the payload in
the NIC DRAM and executing protocol processing in the host to
overcome the above limitations. Our work (1) makes the application
reuse its own buffer as soon as the payload is transferred data in
the NIC DRAM and does not require application modification, (2)
saves host memory bandwidth by putting packet payload in NIC
and eliminating payload copying on the host, and (3) maintains
flexibility by keeping protocol processing on the host. Compared to
the networking stack with CPU-based copy, our work saves 38.6%
of CPU usage and 54.0% of memory bandwidth.

CCS CONCEPTS
• Networks → Transport protocols; • Hardware → Network-
ing hardware.

KEYWORDS
NIC, NIC DRAM, networking stack, zero-copy, host resources

ACM Reference Format:
Byeongkeon Lee, Donghyeon Lee, Jisu Ok, Wonsup Yoon, and Sue Moon.
2023. Host Efficient Networking Stack Utilizing NIC DRAM. In 7th Asia-
Pacific Workshop on Networking (APNET 2023), June 29–30, 2023, Hong Kong,
China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3600061.
3600070

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06. . . $15.00
https://doi.org/10.1145/3600061.3600070

1 INTRODUCTION
The end of Dennard scaling and Moore’s law dictates that the CPU
speed has stalled. In contrast, the networking speed continues to
grow. Data centers have started to deploy 40 GbE NICs by default
[42]. Furthermore, Ethernet Technology Consortium has pushed
out 800 GbE specifications [7]. There is a road map forecast that
800 GbE development will be completed in the 2020s [3].

Here we focus on the trend that the CPU speed remains stag-
nant, but the networking speed is steadily rising. Because the packet
size has stayed put, the network processing overhead grows lin-
early with the networking speed and places a burden on the host
resources. Furthermore, data copy between the application, the
socket buffer, and the NIC has become a costly operation best to
be avoided [6, 12, 26]. This imbalance between networking speed
and CPU has shifted the bottleneck from network to host comput-
ers [6, 27].

The significant CPU usage for network processing has been an
ongoing problem. There have been a variety of approaches to miti-
gate it over the decades: (i) eliminating payload copy by avoiding
separate buffers [1, 11, 12, 15, 21–23, 29, 34, 37, 50], (ii) exploiting
special-purpose hardware for the copy operation [40], and (iii) pro-
tocol offloading to NIC devices [2, 4, 14, 16, 30–32]. However, each
solution has its own limitations. (i) Avoiding separate buffers makes
the networking stack share the payload buffer of the application.
This approach requires application modification, and the applica-
tion buffer must be kept unmodified and not deallocated for a long
time. (ii) Since the socket buffer is present in the host memory,
delegating copy to the special hardware still consumes a significant
portion of memory bandwidth. (iii) The turnaround time in NIC
programming is slow, and protocol offloading suffers from limited
flexibility [4].

These observations have led us to the following insights. For
API compatibility, we should keep the application buffer and net-
working buffer separate, but for memory bandwidth reduction, we
should keep the networking buffer not on the host but in NIC. For
programming flexibility, the protocol processing should remain
on the host. The current hardware trend of NICs and SmartNICs
beefing up on NIC DRAM opens up an opportunity to implement
the above insights. The NIC DRAM is closer to the network than
the host DRAM and thus provides an opportune location for the
networking buffer.

Based on the above insights, we propose a new I/O architec-
ture for host efficient networking stack: exploiting plentiful NIC
DRAM as a buffer only for the payload. Our design transfers1 data
1We denote Xilinx DMA-based copy as "transfer" according to the Xilinx documenta-
tions [43].

https://doi.org/10.1145/3600061.3600070
https://doi.org/10.1145/3600061.3600070
https://doi.org/10.1145/3600061.3600070

APNET 2023, June 29–30, 2023, Hong Kong, China Byeongkeon Lee, Donghyeon Lee, Jisu Ok, Wonsup Yoon, and Sue Moon

Buffer size per connection 1.0 KB 64.0 KB 1.0 MB
system call overhead 1.33% 3.37% 2.02%

_copy_from_iter_full 1.24% 27.46% 61.31%
tcp timer handling 1.66% 2.41% 0.95%

tcp_sendmsg 4.06% 10.54% 7.62%
L3 ∼ L2 processing 6.29% 10.49% 6.43%

skb related processing 3.21% 12.01% 14.20%
etc. 2.33% 0.84% 0.00%

write() CPU in the app. 20.12% 67.12% 92.53%
Table 1: CPU usage breakdown of write().

in the application buffer to FPGA NIC DRAM through the NIC
DMA engine while the host CPU handles the network protocol pro-
cessing. Since most networking stacks do not modify the payload
[8, 37], we choose to run protocol processing and payload transfer
independently.

In §2 we describe existing approaches to reduce the host burden
and analyze pros and cons. In §3 we present our new networking
architecture, and in §4 describe implementation details. In order
to demonstrate the advantages of our new architecture, we com-
pare our approach to three existing I/O schemes: CPU-based copy,
I/OAT-based copy, and zero-copy in §5. Ours reduces CPU usage
by 38.6% compared to the CPU-based approach. Ours also saves
17.3 GB/s memory bandwidth than I/OAT-based copy. Lastly, our
work reduces the application buffer holding time by 52.9-67.9%
depending on the buffer size with socket API intact compared to
the zero-copy.

2 BACKGROUND
Webegin this sectionwith a breakdown analysis of the TCP write()
system call and discuss the impact of the copy operation on the CPU
within the TCP networking stack. Next, we review the following
three approaches to mitigate the host burden: memory pool-based
I/O, application buffer direct I/O, and I/OAT engine copy offload.

2.1 TCP write() System Call Breakdown
Significant CPU consumption for copy in the networking stack has
been a known problem for decades [6]. When the application is I/O
intensive, CPU-based copy dominates CPU usage. To analyze the
CPU usage in detail, we break down the write() system call of a
simple socket application. Both the sender and the receiver used
Intel E810-CQDA2 100 Gbps NICs and Linux 4.15.0. The measure-
ment tool was Linux perf [24]. Table 1 shows that the 1 KB buffer
copy per connection uses 1.24% of CPU cycles. As the buffer size
grows, so does CPU usage: the 64 KB buffer copy alone occupies
27.46% of the application CPU cycles, and a 1 MB buffer copy uses
more than half. Clearly, data copy still remains a challenge in this
era of high-speed networking.

2.2 Memory Pool-based I/O
In memory pool-based I/O approaches, a framework pre-allocates
the memory pool and provides the APIs for applications to access
the pool. To eliminate copy, the application fills data into buffers
from the memory pool, which will be sent out eventually. Since the
frameworks designate the memory pool as an I/O region, it charges
minimal overhead at runtime.

Figure 1: Buffer holding time for copy/zero-copy with differ-
ent RTTs. Lower is better. (log10 scale)

There are many examples achieving payload zero-copy: memory
pool-based I/O engine frameworks (e.g., Netmap [29] and DPDK
[15]) and a networking stack on top of memory pool-based I/O (e.g.,
MAIO [1] and AF_XDP [9]).

The limitations of these approaches are as follows. First, each
framework provides its own APIs to manage the buffer. It thus
forces application modification. Second, the framework, not the
application, manages the buffer. It makes buffers difficult for appli-
cation developers to manage, track, and reuse.

2.3 Application Buffer Direct I/O
DMA from the application buffer is another approach to achiev-
ing zero-copy I/O. By having the NIC hardware fetch the data
directly, it eliminates the need for an intermediate socket buffer
and CPU-based copy. This approach, however, must pin the phys-
ical pages that include the application buffer via kernel API (e.g.,
get_user_page_fast() [10]). Only with pinning, the virtual-to-
physical page mapping remains constant during DMA, and the
kernel does not swap out the pages to disk or move them for mem-
ory compaction [35]. This pinning overhead is not negligible, but
the I/O-intensive applications benefit from low CPU usage through
copy avoidance.

This approach, however, must protect the application buffer
from modification and deallocation until the data transmission is
complete. Otherwise, the corrupt data will be retransmitted to the
receiver, if a packet drop occurs after the data has already been
modified by the application.

There are two types of mechanisms to prevent data corruption:
copy-on-write and completion notifications.
Copy-on-write. Copy-on-write makes the physical pages read-
only, preventing data from being written. Once the write to that
page takes place, the page fault handler copies them to another
page. This mechanism eventually preserves the original buffer from
modification.

Host Efficient Networking Stack Utilizing NIC DRAM APNET 2023, June 29–30, 2023, Hong Kong, China

ZCopy [34] and zIO [37] are examples of application buffer di-
rect I/O with copy-on-write protection. ZCopy [34] has risen from
the observation that web-caching applications rarely modify ap-
plication buffers. It removes most CPU-based copies by sharing
the copy-on-write protected application buffer with the network
stack. zIO [37] provides copy-on-write memcpy(). In zIO, the desti-
nation buffer shares copy-on-write protected physical pages with
the source buffer to avoid unnecessary copy.

Shortcomings of the copy-on-write mechanisms are: (i) It op-
erates in the unit of pages. (ii) It involves additional expensive
operations such as write protection and page faults. Their costs are
bearable only for applications with few writes.
CompletionNotification. MSG_ZEROCOPY [12, 13] and IO_uring
[11] are the completion notification mechanisms that let the applica-
tion know when the application buffer is safe for reuse. MSG_ZERO
COPY uses a socket error queue, and IO_uring uses the existing
completion queue. Applications are modified to use these queues
and decide when to modify or deallocate the buffer. In case the
underlying networking protocol is TCP, the application buffer is
reusable only after the data is reliably transmitted. The buffer hold-
ing time is at least 1 RTT.

The buffer holding time is the amount of time an application
should not modify or deallocate its own buffer.We have conducted a
simple experiment to measure the buffer holding time of host CPU-
based copy and zero-copy (MSG_ZEROCOPY). The buffer holding
time for the copy is the write() system call return time, while
that for the zero-copy is the time until the completion notification
arrives. When two servers are close by, the RTT is very short. On
the other hand, a long-haul connection, for example, between our
lab in South Korea and the Amazon EC2 California region, incurs
long RTT. As shown in Figure 1, the buffer holding time of the
zero-copy is significantly larger than the copy, as the zero-copy
should wait for at least 1 RTT. Note that the kernel performs copy
for zero-copy API when a buffer is smaller than a specific size [8].

The long buffer holding time makes application memory scarce
when the application runs in a memory-constrained environment.
It also adds complexity to the application design. The application
needs to track whether the application buffer is free for reuse for a
long time.

2.4 Intel I/OAT
Intel I/O Acceleration Technology (Intel I/OAT) [17, 40] is a set of
technologies that improve throughput, efficiency, and scalability
for data flow.

Intel QuickData Technology "enables data copy by the chipset
instead of the CPU, to move data more efficiently" [17]. This tech-
nology is applicable to the existing networking stack; replacing
the subject of data copy from the CPU to I/OAT engine saves CPU
cycles. However, it supports only a limited number of channels at
any time, and its use is won over competition with other processes.
Despite the CPU cycle reduction, it still consumes memory band-
width if the socket buffer remains in host memory. Compared to
zero-copy mechanisms in § 2.2 and § 2.3, it requires double the
memory bandwidth.

Figure 2: Architecture overview

3 ARCHITECTURE
All the existing solutions from §2 point at the importance of limit-
ing CPU usage while using as little memory bandwidth as possible
for network processing. We propose a new I/O architecture design
that takes full advantage of modern FPGA NICs with significantly
large DRAM. Our new I/O architecture places the payload buffer
in the NIC DRAM and directly forwards the application buffer to
the payload buffer without an intermediate on-host socket buffer.
Except for the payload transfer, other parts of network stack pro-
cessing remain on the host, allowing high flexibility in protocol
updates.

3.1 Architecture Overview
Figure 2 illustrates our architecture overview. It consists of the
FPGA NIC layer and the host TCP stack layer, upon which the user
application layer sits. In our architecture, the socket API to the
application remains intact and the application requires no modifica-
tion. It is the role of the TCP stack to transfer the payload to the NIC
DRAM but maintain the header in the host memory. When the host
TCP stack requests, the NIC generates and transmits packets by
concatenating the header on the host and the payload in FPGA NIC
DRAM. The host TCP stack manages headers and processes TCP
algorithms, such as reliable data transfer through loss detection and
retransmission. It also exposes socket APIs intact to the application.

Here we illustrate how our new I/O architecture works step by
step. First, 1 the application makes a blocking write(fd, buf,
len) system call to send the data. Then, 2 the host TCP stack starts
to transfer the payload from the application buffer to FPGA NIC
DRAM via an FPGA hardware module, XDMA (Xilinx DMA) [43].
At the same time, the TCP stack starts to prepare packet headers
and fills them into the host memory accessible by FPGA. After 2 ,
3 the application is unblocked and free to modify or deallocate its
own buffer. Then, 4 the TCP stack sends a transmission request
to FPGA NIC with the address of the header and the payload. 5
Upon receiving the transmission request, the transmit module in
the FPGA NIC creates packets by concatenating the header from

APNET 2023, June 29–30, 2023, Hong Kong, China Byeongkeon Lee, Donghyeon Lee, Jisu Ok, Wonsup Yoon, and Sue Moon

the host memory and the payload from FPGA NIC DRAM. 6 Since
the data transmission unit between FPGA modules is 64 bytes, this
header clip module trims redundant data that exists at the end of
the header if the header length is less than 64 bytes. 7 The Xilinx
CMAC subsystem [46] finally sends out the complete packets to
the network through the transceiver.

3.2 FPGA Module Design
In this section, we describe the modules we have designed for
our new I/O architecture. The first three modules, Host Memory
Access, XDMA, and CMAC are modules from Xilinx. The other two
modules, Transmit and Header Clip modules are of our making.
Host Memory Access allows the FPGA module to read and write
directly from the host memory region, bypassing the FPGA NIC
DRAM [44]. We use it to load the packet headers to the FPGA
transmit module efficiently in 5 .
XDMA is the main FPGA module Xilinx provides to transfer data
between host memory and FPGA NIC DRAM via PCIe [43]. We
use 2 DMA channels to utilize multiple DRAM modules in parallel,
maximizing the transfer rate of payload.
CMAC. (C Media Access Controller) stands for the 100 Gbps (the
Roman letter C for 100) ethernet transmit system on the Alveo NIC.
Transmit Module. The host stack triggers the transmit module
by submitting a request with the packet header address, header
length in the host, the payload address, and payload length in the
FPGA NIC DRAM. This module collects and concatenates the data
from the respective addresses.
Header Clip Module. The preceding transmit module sends and
receives data in units of 64 bytes according to the AXI protocol [45].
This enforces the packet header to move from the host DRAM to
the transmit module in a 64-byte-padded form. The packet header,
however, is often less than 64 bytes (typically 54 bytes), so the
padded bits should be removed before being put onto the wire. The
header clip module removes those bits (10 bytes) from the header
chunk and fills this hole by shifting the payload bytes. It then sends
the series of rearranged 64-byte chunks to CMAC module [46],
which generates a complete packet from the chunks and transmits
the packet to the wire.

3.3 Host TCP Stack Design
We separate host operations into two layers: the TCP processing
layer focuses on TCP-related tasks, and the I/O engine handles
sending and receiving packets.
The TCP processing layer is responsible for header buffer man-
agement, FPGA NIC control, and TCP algorithms such as connec-
tion setup and packet loss detection. It exposes blocking socket APIs
to the application. After the application establishes connections
through connect() and then calls write(), the TCP processing
layer prepares the headers in the host memory and moves the pay-
load to FPGA NIC DRAM simultaneously. The payload bypasses
the TCP stack and avoids copies in the host. In this work, we do
not consider cases of payload modification, such as IPsec, and leave
them for future work.
I/O Engine. The TCP processing delivers the address of headers
and payloads to the I/O engine, and the I/O engine sends Tx requests

containing the addresses to the FPGA NIC. The I/O engine also
detects packet arrivals from the network. It delivers the packet to
the TCP processing.

4 IMPLEMENTATION
4.1 FPGA Implementation
We use the 100 Gbps Ethernet Alveo U200 data center accelerator
card with 4 x 16 GB DDR4 2400 MT/s memory. The FPGA modules
originated from the Vitis Network Example project of the Xilinx
University Program [49]. We have removed all networking stack-
related modules and implemented modules through Vitis High-
Level Synthesis (HLS) [47]. The platform is xilinx_u200_gen3x16
_xdma_1_202110_1. The Vitis and v++ compiler versions are 2021.2.

The current implementation of the receiver side transfers the
payload from the network to the host memory bypassing FPGA
NIC DRAM. Then, the host stack parses it immediately.

4.2 Host Implementation
Using Xilinx RunTime Library (XRT) [48], the host CPU controls
the Alveo U200 device easily. The library also provides a buffer
object abstraction for FPGA NIC DRAM. We implement a packet
I/O engine and host TCP stack as a user library on top of XRT. We
use the XRT library version 2.12.427. The entire host stack is about
2,500 lines of C++ code.

4.3 Limitations
We present the current implementation as a proof of concept for
our design. Hence, minimum TCP features have been implemented.
To evaluate the performance of TCP send, we focus only on TCP
active open. The TCP passive open APIs are not implemented as of
now.

TCP flow and congestion controls are out of scope. Since the
FPGA NIC DRAM is byte-addressable by the Transmit Module, we
expect their incorporation to be straightforward.

Many host protocol stacks treat checksum computation as a
function offloaded to NICs. The current implementation assumes
that the checksum computation is done on FPGA NIC [39] and
omitted.

5 EVALUATION
The goal of this section is to demonstrate that our new I/O archi-
tecture delivers improved performance over existing solutions. We
compare ours against the following three schemes: baseline, I/OAT,
and zero-copy.
Baseline. Host CPU copies data from the application buffer to the
socket buffer. Both buffers reside in the host memory. This is the
typical performance we expect from most applications on Linux.
I/OAT. Both buffers are the same as the baseline, but the I/OAT
hardware executes copy instead of the host CPU. Using I/OAT
for application buffers requires the following constraints. First, it
should pin the application buffer to keep the physical pages of the
application buffer constant [35]. Second, the virtual-to-physical ad-
dress translation is necessary since I/OAT hardware needs physical
addresses for application pages rather than virtual addresses. Last,
I/OAT copy granularity should be up to the page size of 4 KB. We

Host Efficient Networking Stack Utilizing NIC DRAM APNET 2023, June 29–30, 2023, Hong Kong, China

Figure 3: (a) CPU usage, (b) throughput, and (c) memory access/bandwidth usage of four I/O schemes. For (a) CPU usage and (c)
memory access/bandwidth usage, lower is better.

have applied these constraints to SPDK open source that provides
an interface to I/OAT [36]. Note that we translate virtual addresses
to physical addresses via the proc file system and exclude this
overhead in the evaluation.
Zero-copy. Similar to LinuxMSG_ZEROCOPY [13], data is directly
moved from the application buffer to the NIC transceiver via the
XDMA engine without going through the FPGA NIC DRAM. This
also requires application buffer pinning.

Our evaluation has focused on answering the following ques-
tions: Does our work show (i) less CPU usage than the baseline? (ii)
Comparable throughput with other I/O schemes? (iii) Less memory
bandwidth usage than the baseline and the I/OAT? (iv) Shorter
buffer holding time than the zero-copy?
Setup. Two machines, a sender and a receiver, are directly con-
nected with a 100 Gbps link. Each machine has a single NUMA
of Intel Xeon Gold 6226R CPU@2.90 GHz with Hyper-Threading
disabled and 384 GiB memory. The sender has Alveo FPGA NIC.
The receiver has Intel E810-CQDA2 100 Gbps NIC and runs a simple
DPDK-based TCP stack. Both NICs are attached to hosts through
PCIe 3.0 x 16.

We use Linux kernel 4.15.0. We use Linux pidstat [25] to mea-
sure CPU usage and Intel PCM [18] to measure memory bandwidth
usage. We have iterated the 3.6 MB buffers 1,125 times, 4.06 GB in
total.

5.1 CPU Usage
Figure 3(a) shows the CPU usage of the write() system call in the
four I/O schemes. It counts packet header preparation and payload
transfer. As expected, the baseline shows the highest CPU usage
because of its CPU-based payload copy. Compared to the baseline,
our work saves CPU cycles by 38.6%.

Others have similar CPU usage. The zero-copy consumes 9.7%
more CPU usage compared to our work. Waiting for completion
notifications and handling them in the application increases CPU
usage, while our work does not need to. Our work, however, has one
more step than zero-copy. Payload transfer to FPGA NIC DRAM
increases payload I/O by 13.3%.

Our work has a slightly lower CPU usage than I/OAT. The addi-
tional payload I/O cost for I/OAT is caused by checking the I/OAT
task completion in the host TCP stack.

5.2 Throughput
Generally, CPU-based memory copy is expected to have higher
speed than DMA transfer since memory copy is simply a set of
memory read and write while DMA transfer should pull the data
over PCIe. However, in the case of I/O-intensive applications, the
heavy use of CPU-basedmemory copy exceeds the cache size [33, 37,
41] and thus aggravates the overall throughput. This counterbalance
resulted in a similar throughput for the baseline and our work, as
shown in Figure 3(b).

Zero-copy has the lowest throughput because the completion
notification mechanism pauses the application until ACKs arrive
from the receiver. I/OAT has the highest throughput, but note that
address translation costs are excluded from our measurement.

5.3 Memory Access and Bandwidth Usage
As shown in the bar of Figure 3(c), the baseline and the I/OAT access
memory 2.18x and 2.24x more than ours, respectively. Considering
only host memory, the payload of both baseline and I/OAT should
be read from the application buffer, written to the payload buffer,
and read again by the NIC. In contrast, zero-copy and our work
only need to read the application buffer by the NIC. This difference
results in 7.6 GB lower memory access for our work than for I/OAT.

Taking the elapsed time into account, memory bandwidth also
shows similar trends, as described in the line of Figure 3(c). Our
work uses 54.0% and 61.7% lower memory bandwidth than baseline
and I/OAT, respectively. Compared to I/OAT, it saves 17.3 GB/s. Con-
sidering our system-wide theoretical maximum bandwidth (140.8
GB/s), this is a considerable saving of 12.3%. The lowest zero-copy
memory bandwidth usage is caused by the longest elapsed time
due to the lowest throughput.

APNET 2023, June 29–30, 2023, Hong Kong, China Byeongkeon Lee, Donghyeon Lee, Jisu Ok, Wonsup Yoon, and Sue Moon

Figure 4: TCP buffer holding time of four I/O schemes. Lower
is better.

5.4 Buffer Holding Time
Figure 4 shows the buffer holding time of the four I/O schemes. The
application layer measures the buffer holding time, from the time
it calls write() to the time it is free to safely reuse the buffer. As
expected, zero-copy shows the longest buffer holding time due to
completion notification handling. Other schemes, however, do not
have the completion notification mechanism. The application on
top of those schemes is free to reuse the buffer immediately after
the write() system call returns. Finally, I/O schemes other than
zero-copy show similar buffer holding times.

The grey dashed line represents the reduced buffer holding time
of our work compared to zero-copy. As shown, our work has a
52.9-67.9% shorter buffer holding time than zero-copy.

Note that the sender and receiver are directly connected, which
is the optimal environment. The buffer holding time of zero-copy is
dependent on the RTT of the path between the sender and receiver.
Thus it increases when packets pass through multiple hops.

5.5 Socket API Intact
Many existing zero-copy mechanisms force the use of specific APIs
or completion notification handling, causing application modifica-
tion. Our work, however, does not require any of them. Applications
on top of our TCP stack avoids CPU-based copy without code-level
modification. All the application has to do is to load the shared
object via LD_PRELOAD=./libtcp.so.

6 RELATEDWORK
Modern NICs are constantly adding features to save host resources.
Exploiting NIC Memory. Recent work demonstrates many use
cases of NIC memory. Nicmem [28] aims to reduce CPU, memory,
and PCIe usage for Network Functions (NFs) with an insight that
most NFs do not touch payload [38]. Contents cache [5, 19, 20, 51]
in the NIC memory shares the same goals as our work. But we
focus on transferring the application buffer rather than caching
responses.

Exploiting the NIC Processor. Protocol processing offloading
to NICs is an active field of research. AccelTCP proposes offload-
ing TCP for short-lived connections [26]. Limago implements a
100 Gbps TCP Offload Engine on the FPGA boards [30]. Since pro-
tocol offloading suffers from the flexibility issue, TONIC proposes a
flexible hardware design by modularizing TCP [4]. In contrast, we
aim to provide high performance while retaining high flexibility
by processing protocol on the host without expensive CPU-based
copy operations.

7 FUTUREWORK
Reusing NIC DRAM Buffer. Storing payload in the NIC memory
is advantages in packet retransmission. Our design reuses the pay-
load in the NIC DRAM without fetching data from the host again,
saving both host memory access and PCIe usage. For lossy network
connections, our approach should deliver comparable throughput
with less CPU and memory bandwidth consumption.
Receiver SideCPU-basedCopyElimination. Our current imple-
mentation has focused on the sender side. Eliminating CPU-based
copy on the receiver side requires careful coordination. For efficient
DMA from NIC DRAM to the application buffer without involving
the intermediate host buffer, the payload must be as contiguous
as possible on the FPGA NIC DRAM. We plan to find a suitable
receiver-side design that does not compromise flexibility.
Other Protocol Support. Although our current design and im-
plementation is centered around TCP, it is not limited to TCP. We
expect other protocols, such as DCTCP and QUIC, could apply our
architecture to their code easily.

8 CONCLUSION
Host resources, more specifically, CPU cycles and memory band-
width are a performance constraining factor as the network band-
width increases. We have proposed a new I/O architecture utilizing
the FPGA NIC DRAM. Our design aims to reduce both CPU and
memory bandwidth usage, shorten the buffer holding time, and
preserve the protocol processing flexibility without application
modification.

We have compared four I/O schemes: baseline, I/OAT, zero-copy,
and our work. Our work shows (i) 38.6% lower CPU usage than
baseline, (ii) 7.6 GB lessmemory access and 17.3 GB/s lowermemory
bandwidth usage compared to I/OAT, (iii) up to 67.9% shorter buffer
holding time than zero-copy.

Our design retains the protocol processing in the host CPU, and
thus the flexibility is not compromised. Lastly, the application bene-
fits from CPU-based copy elimination by loading the shared object
without application modification. The current implementation is
limited to the bare skeletal of the architecture and is to be expanded
to include the complete TCP protocol.

ACKNOWLEDGMENTS
We sincerely thank anonymous reviewers for their helpful com-
ments. This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2022R1A2C2009062).

Host Efficient Networking Stack Utilizing NIC DRAM APNET 2023, June 29–30, 2023, Hong Kong, China

REFERENCES
[1] AlexMarkuze, Igor Golikov, and Chen Dar. 2021. Rethinking Zero-Copy Network-

ing with MAIO. The Technical Conference on Linux networking 0x15, Virtual.
[2] Alexforencich. Verilog Ethernet Components Introduction. http://alexforencich.

com/wiki/en/verilog/ethernet/start
[3] Ether Alliance. Ethernet Roadmap 2023. https://ethernetalliance.org/technology/

ethernet-roadmap/
[4] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,

David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
93–109.

[5] Herbert Bos and Kaiming Huang. 2009. CacheCard: Caching Static and Dynamic
Content on the NIC (ANCS ’09). Association for Computing Machinery, New
York, NY, USA, 1–10.

[6] Qizhe Cai, ShubhamChaudhary,Midhul Vuppalapati, JaehyunHwang, and Rachit
Agarwal. 2021. Understanding Host Network Stack Overheads. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). Association for
Computing Machinery, New York, NY, USA, 65–77.

[7] Ethernet Technology Consortium. 25 Gigabit Ethernet Consortium Rebrands
to Ethernet Technology Consortium; Announces 800 Gigabit Ethernet (GbE)
Specification. https://ethernettechnologyconsortium.org/press-room/press-
releases/25-gigabit-ethernet-consortium-rebrands-to-ethernet-technology-
consortium-announces-800-gigabit-ethernet-gbe-specification-152/

[8] Jonathan Corbet. Zero-copy networking. https://lwn.net/Articles/726917/
[9] Jonathan Corbet. Accelerating networking with AF_XDP. https://lwn.net/

Articles/750845/
[10] Jonathan Corbet. Explicit pinning of user-space pages. https://lwn.net/Articles/

807108/
[11] Jonathan Corbet. Zero-copy network transmission with io_uring. https://lwn.

net/Articles/879724/
[12] Willem de Bruijn and Eric Dumazet. 2017. sendmsg copy avoidance with

MSG_ZEROCOPY. The Technical Conference on Linux networking 2.1, LeWestin
Montréal, Montreal, Canada.

[13] Linux Kernel Document. MSG_ZEROCOPY. https://www.kernel.org/doc/html/
v4.15/networking/msg_zerocopy.html

[14] Z. He, D. Korolija, and G. Alonso. 2021. EasyNet: 100 Gbps Network for HLS. In
2021 31st International Conference on Field-Programmable Logic and Applications
(FPL). IEEE Computer Society, Los Alamitos, CA, USA, 197–203.

[15] Intel. Intel Data Plane Development Kit. https://www.dpdk.org/
[16] Intel. Intel Ethernet Network Adapter E810-CQDA2. https:

//ark.intel.com/content/www/us/en/ark/products/192558/intel-ethernet-
network-adapter-e810cqda2.html

[17] Intel. Intel® I/O Acceleration Technology. https://www.intel.com/content/www/
us/en/wireless-network/accel-technology.html

[18] Intel. Intel® Performance Counter Monitor (Intel® PCM). https://github.com/
intel/pcm

[19] H. Kim, S. Rixner, and V.S. Pai. 2005. Network interface data caching. IEEE Trans.
Comput. 54, 11 (2005), 1394–1408.

[20] Hyong-youb Kim, Vijay S. Pai, and Scott Rixner. 2002. Increasing Web Server
Throughput with Network Interface Data Caching. In Proceedings of the 10th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS X). Association for Computing Machinery, New
York, NY, USA, 239–250.

[21] Linux. sendfile — Linux manual page. https://man7.org/linux/man-pages/man2/
sendfile.2.html

[22] Linux. splice — Linux manual page. https://man7.org/linux/man-pages/man2/
splice.2.html

[23] Linux. vmsplice — Linux manual page. https://man7.org/linux/man-pages/man2/
vmsplice.2.html

[24] Linux. perf — Linux manual page. https://man7.org/linux/man-pages/man1/perf.
1.html

[25] Linux. pidstat — Linux manual page. https://man7.org/linux/man-pages/man1/
pidstat.1.html

[26] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Kyoung-
Soo Park. 2020. AccelTCP: Accelerating Network Applications with Stateful
TCP Offloading. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 77–92.

[27] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe Performance
for End Host Networking. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’18). Association for
Computing Machinery, New York, NY, USA, 327–341.

[28] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022. The Benefits
of General-Purpose on-NIC Memory. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’22). Association for Computing Machinery, New York, NY,

USA, 1130–1147.
[29] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In 2012

USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association,
Boston, MA, 101–112.

[30] Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso, and Sergio López-
Buedo. 2019. Limago: an FPGA-based Open-source 100 GbE TCP/IP Stack. In
2019 29th International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 286–292.

[31] D. Sidler, G. Alonso, M. Blott, K. Karras, et al. 2015. Scalable 10Gbps TCP/IP Stack
Architecture for Reconfigurable Hardware. In FCCM’15.

[32] D. Sidler, Z. Istvan, and G. Alonso. 2016. Low-Latency TCP/IP Stack for Data
Center Applications. In FPL’16.

[33] Richard L. Sites. Fast memcpy, A System Design. https://www.sigarch.org/fast-
memcpy-a-system-design/

[34] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang. 2012. Revisiting Software
Zero-Copy for Web-caching Applications with Twin Memory Allocation. In 2012
USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association,
Boston, MA, 355–360.

[35] SPDK. Direct Memory Access (DMA) From User Space. https://spdk.io/doc/
memory.html

[36] SPDK. Storage Performance Development Kit. https://github.com/spdk/spdk
[37] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei Zhang, and Simon

Peter. 2022. zIO: Accelerating IO-Intensive Applications with Transparent Zero-
Copy IO. In 16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22). USENIX Association, Carlsbad, CA, 431–445.

[38] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017. NFP: Enabling
Network Function Parallelism in NFV. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’17). Association
for Computing Machinery, New York, NY, USA, 43–56. https://doi.org/10.1145/
3098822.3098826

[39] Gustavo Sutter, Mario Ruiz, Sergio Lopez-Buedo, and Gustavo Alonso. 2018.
FPGA-based TCP/IP Checksum Offloading Engine for 100 Gbps Networks. In
2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig).
1–6.

[40] Jonathan Stern Thai Le, Steven Briscoe. Fast memcpy with SPDK and Intel®
I/OAT DMA Engine. https://www.intel.com/content/www/us/en/developer/
articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html

[41] Karthikeyan Vaidyanathan and Dhabaleswar K. Panda. 2007. Benefits of I/O Ac-
celeration Technology (I/OAT) in Clusters. In 2007 IEEE International Symposium
on Performance Analysis of Systems & Software. 220–229.

[42] Wenfeng Xia, Peng Zhao, Yonggang Wen, and Haiyong Xie. 2017. A Survey on
Data Center Networking (DCN): Infrastructure and Operations. IEEE Communi-
cations Surveys & Tutorials 19 (2017), 640–656.

[43] Xilinx. DMA/Bridge Subsystem for PCI Express Product Guide (PG195). https:
//docs.xilinx.com/r/en-US/pg195-pcie-dma/Introduction

[44] Xilinx. Host Memory Access. https://xilinx.github.io/XRT/master/html/hm.html
[45] Xilinx. Interfaces for Vitis Kernel Flow. https://docs.xilinx.com/r/en-US/ug1399-

vitis-hls/Interfaces-for-Vitis-Kernel-Flow
[46] Xilinx. UltraScale+ Devices Integrated 100G Ethernet Subsystem v3.1 LogiCORE

IP Product Guide. https://docs.xilinx.com/r/en-US/pg203-cmac-usplus
[47] Xilinx. Vitis HLS. https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/

docs/Getting_Started/Vitis_HLS/Getting_Started_Vitis_HLS.html
[48] Xilinx. Xilinx Runtime Library (XRT). https://www.xilinx.com/products/design-

tools/vitis/xrt.html
[49] Xilinx. XUP Vitis Network Example (VNx). https://github.com/Xilinx/xup_vitis_

network_example
[50] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016.

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs.
In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX Associa-
tion, Denver, CO, 43–56.

[51] Kenneth Yocum and Jeffrey S. Chase. 2001. Payload Caching: High-Speed Data
Forwarding for Network Intermediaries. In 2001 USENIX Annual Technical Con-
ference (USENIX ATC 01). USENIX Association, Boston, MA.

http://alexforencich.com/wiki/en/verilog/ethernet/start
http://alexforencich.com/wiki/en/verilog/ethernet/start
https://ethernetalliance.org/technology/ethernet-roadmap/
https://ethernetalliance.org/technology/ethernet-roadmap/
https://ethernettechnologyconsortium.org/press-room/press-releases/25-gigabit-ethernet-consortium-rebrands-to-ethernet-technology-consortium-announces-800-gigabit-ethernet-gbe-specification-152/
https://ethernettechnologyconsortium.org/press-room/press-releases/25-gigabit-ethernet-consortium-rebrands-to-ethernet-technology-consortium-announces-800-gigabit-ethernet-gbe-specification-152/
https://ethernettechnologyconsortium.org/press-room/press-releases/25-gigabit-ethernet-consortium-rebrands-to-ethernet-technology-consortium-announces-800-gigabit-ethernet-gbe-specification-152/
https://lwn.net/Articles/726917/
https://lwn.net/Articles/750845/
https://lwn.net/Articles/750845/
https://lwn.net/Articles/807108/
https://lwn.net/Articles/807108/
https://lwn.net/Articles/879724/
https://lwn.net/Articles/879724/
https://www.kernel.org/doc/html/v4.15/networking/msg_zerocopy.html
https://www.kernel.org/doc/html/v4.15/networking/msg_zerocopy.html
https://www.dpdk.org/
https://ark.intel.com/content/www/us/en/ark/products/192558/intel-ethernet-network-adapter-e810cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/192558/intel-ethernet-network-adapter-e810cqda2.html
https://ark.intel.com/content/www/us/en/ark/products/192558/intel-ethernet-network-adapter-e810cqda2.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://github.com/intel/pcm
https://github.com/intel/pcm
https://man7.org/linux/man-pages/man2/sendfile.2.html
https://man7.org/linux/man-pages/man2/sendfile.2.html
https://man7.org/linux/man-pages/man2/splice.2.html
https://man7.org/linux/man-pages/man2/splice.2.html
https://man7.org/linux/man-pages/man2/vmsplice.2.html
https://man7.org/linux/man-pages/man2/vmsplice.2.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://www.sigarch.org/fast-memcpy-a-system-design/
https://www.sigarch.org/fast-memcpy-a-system-design/
https://spdk.io/doc/memory.html
https://spdk.io/doc/memory.html
https://github.com/spdk/spdk
https://doi.org/10.1145/3098822.3098826
https://doi.org/10.1145/3098822.3098826
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://www.intel.com/content/www/us/en/developer/articles/technical/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://docs.xilinx.com/r/en-US/pg195-pcie-dma/Introduction
https://docs.xilinx.com/r/en-US/pg195-pcie-dma/Introduction
https://xilinx.github.io/XRT/master/html/hm.html
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Interfaces-for-Vitis-Kernel-Flow
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Interfaces-for-Vitis-Kernel-Flow
https://docs.xilinx.com/r/en-US/pg203-cmac-usplus
https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/docs/Getting_Started/Vitis_HLS/Getting_Started_Vitis_HLS.html
https://xilinx.github.io/Vitis-Tutorials/2021-2/build/html/docs/Getting_Started/Vitis_HLS/Getting_Started_Vitis_HLS.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example

	Abstract
	1 Introduction
	2 Background
	2.1 TCP write() System Call Breakdown
	2.2 Memory Pool-based I/O
	2.3 Application Buffer Direct I/O
	2.4 Intel I/OAT

	3 Architecture
	3.1 Architecture Overview
	3.2 FPGA Module Design
	3.3 Host TCP Stack Design

	4 Implementation
	4.1 FPGA Implementation
	4.2 Host Implementation
	4.3 Limitations

	5 Evaluation
	5.1 CPU Usage
	5.2 Throughput
	5.3 Memory Access and Bandwidth Usage
	5.4 Buffer Holding Time
	5.5 Socket API Intact

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

