
Poster: Pushing RDMA into Milliseconds RTT Communication
Jisu Ok
KAIST

Daejeon, Republic of Korea
jisu.ok@kaist.ac.kr

Wonsup Yoon
KAIST

Daejeon, Republic of Korea
wsyoon@kaist.ac.kr

Sue Moon
KAIST

Daejeon, Republic of Korea
sbmoon@kaist.ac.kr

Abstract
Thanks to its high performance and efficiency, RDMA has become
an essential networking primitive in today’s datacenter. However,
existing RDMA-based systems mainly focus on accelerating data
communication of endpoints away from each other in tens or hun-
dreds of microseconds RTT. This paper aims to address the follow-
ing question: How far can RDMA be employed without losing its
performance and efficiency merit? We present our methodology
and analysis to study the potential of RDMA networking over a
millisecond-scale RTT path.

CCS Concepts
• Networks → Network experimentation; Transport protocols.

Keywords
RDMA, millisecond RTT network

ACM Reference Format:
Jisu Ok, Wonsup Yoon, and Sue Moon. 2024. Poster: Pushing RDMA into
Milliseconds RTT Communication. In Proceedings of the 20th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’24), December 9–12, 2024, Los Angeles, CA, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3680121.3699883

1 Introduction
The promise of Remote Direct Memory Access (RDMA), which
provides high throughput and ultra-low latency albeit low CPU
utilization, has expedited datacenter workloads and RDMA is a
primary networking primitive. Examples vary from RDMA-based
key-value stores, transaction systems, and file systems to GPU data
communication. As a result, RDMA’s portion in datacenter network
traffic has been steadily growing [4].

However, existing efforts and deployments from both academia
and industries mainly focus on usage scenarios of RDMA where
communicating endpoints reside in the microsecond-scale RTT
range. RDMA-based systems usually operate under an intra-rack
configuration where RTT is typically a few or at most tens of
microseconds. Among hosts beyond a rack and between podsets,
latency still stays in hundreds of microseconds [5]. RDMA has been
proven to function as an efficient and effective method over such
network paths, but its behavior on farther connections has drawn
less attention.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’24, December 9–12, 2024, Los Angeles, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1108-4/24/12
https://doi.org/10.1145/3680121.3699883

Rx
thread

Pkt
(timestamped)

Dequeue &
check timestamp

Enqueue
delayed pkt

Pkt

Delay
buffer

Send
buffer

Delay Node

Endpoint 1

RDMA Node

Port A

Port B
Rx

thread

worker
thread

perftest
client

perftest
server

100G

RNIC

RNIC

Endpoint 2

100G

Figure 1: Experiment Setup. Only one direction of traffic flow
is depicted for simplicity.

In this paper, we throw a question on RDMA’s extendibility: How
far can RDMA be employed without losing its performance and
efficiency merits? As a first step to address it, we explore RDMA’s
performance over network paths whose RTT varies from tens of
microseconds to milliseconds.1 We introduce our experimental
setup, which uses a network delay emulator, and present prelim-
inary results showing RDMA throughput over millisecond RTT
communication.

2 Emulating Millisecond-scale Path
Establishing a physically multi-hopped path in a testbed is chal-
lenging, particularly when the desired network latency falls in the
millisecond range and the end-to-end path distance spans hundreds
of kilometers. Instead we take the emulation approach for scalable
experiments and precise control of path RTT. We have built and
placed a delay emulation node between two communication end-
points as shown in Figure 1. The delay node is based on DPDK and
follows the design of Rx/Worker/Tx thread separation [1]. The Rx
thread receives packets from a port and enqueues them to the delay
buffer. The Tx thread does similar delivery from the send buffer to
the other port. The worker thread artificially injects delay into each
packet by holding it up in the delay buffer for the pre-configured
amount of time. Since the delay node is a transparent link layer ele-
ment, it provides an illusion to the endpoints as if the endpoints are
communicating directly with each other over a path with variable
propagation delay.

The delay emulation system has to meet the following two re-
quirements. First, queue buildup should be minimal except for in
the delay buffer, which we intentionally induce by holding packets
until their transmission times. The other source of queueing delay
from packets being stacked up in the send buffer harms the accu-
racy of the emulation. Second, unintended packet loss must not
occur on the data path of delay injection. Considering the RDMA’s
well-known vulnerability to packet loss, even a small number of
packet drops would affect the communication performance and
interfere with our measurement. Along with the engineering effort
(e.g., tuning system parameters such as queue sizes) to manage the
11 ms of delay corresponds to about 200 km of end-to-end path length, assuming the
propagation speed is 2 · 108 m/s.

19

https://doi.org/10.1145/3680121.3699883
https://doi.org/10.1145/3680121.3699883
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3680121.3699883&domain=pdf&date_stamp=2024-12-09

CoNEXT ’24, December 9–12, 2024, Los Angeles, CA, USA Jisu Ok, Wonsup Yoon, and Sue Moon

0

20

40

60

80

100

10 100 1,000 10,000T
h

ro
u

g
h

p
u

t
(%

)

Delay added (us)
READ, 4KB READ, 64KB READ, 1MB

WRITE, 4KB WRITE, 64KB WRITE,1MB

Figure 2: Added delay and normalized throughput.

above requirements, we monitor the length of each queue during
the experiments and check whether any persistent queue buildup
occurred. We also verify the existence of packet loss using ports
and system-internal statistics. If any number of losses are detected,
results from that run are excluded from our analysis. Our current
version of the emulation system bears up to 16 Mpps traffic without
packet loss. Scaling up the packet delay emulator further is also an
interesting research direction and we leave this as a future work.

We measure RoCEv2 RDMA throughput between two endpoints
using perftest [3], a well-known benchmarking tool for RDMA
Verbs API. The endpoints and the delay node run on Ubuntu 22.04
servers with Intel Xeon Gold 6330 CPU @ 2.00 GHz and NVIDIA
ConnectX-6 Dx 100G RNIC. PFC was enabled for each physical link.
MLNX_OFED 23.10, DPDK 23.11, and perftest 6.17 were used.

3 Preliminary Results
Figure 2 plots the changing RDMA throughputs as path delay in-
creases, with three different message sizes: 4KB, 64KB, and 1MB.
The throughput in the 𝑦-axis is not absolute, but normalized to
the baseline throughput where no artificial delay is added (i.e., the
shortest path possible).

From the figure we observe that the larger the message size is,
the more resilient the throughput is to the path delay. When the
message size is 1 MB, both READ and WRITE maintain more than
90% of their baseline throughput with the delay less than 1 ms.
On the other hand, for small message sizes, the throughput drops
steadily as delay increases. Mere 20 𝜇s of added delay diminishes
the throughput by more than 40% when the message size is 4 KB.

We note that the throughput decrease in longer path delay is not
coming from the effect of larger PFC headroom as mentioned in [6].
Our emulation system adds delay to the packets virtually by holding
them in an intermediate queue and the length of the physical link on
which PFC operates remains as constant (a few meters). Congestion
control (DCQCN in our configuration) also does not affect this
result since the delay node does not touch the ECN bits of packets.
As there is no change in ECN bits, DCQCN’s congestion detection
works unscathed even when path RTT varies [4].

Although the use of small message sizes under milliseconds of
RTT achieves far lower throughput than the line rate, employing
multiple parallel connections enhances the link utilization. As op-
posed to Figure 2 which reports a single connection performance,
we increase the number of RDMA connections and present ag-
gregate throughput in Figure 3. The added delay is fixed to 1 ms.
Though a single connection achieves only 0.26 Gbps and 1.60 Gbps
for 4KB READ and 4KBWRITE, respectively, the aggregate through-
put increases linearly with more connections until it reaches the

0

20

40

60

80

100

1 2 4 8 16 32 64 128 256 512 1,024

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

of connections

READ, 4KB

WRITE, 4KB

Figure 3: Number of connections and throughput.

upper bound. This upper bound saturates the link bandwidth con-
sidering the RoCEv2 header overhead.

However, READ and WRITE exhibit different behaviors in their
throughput reduction. READ experiences more severe degradation
thanWRITE in all message sizes (Figure 2). Consequently, it requires
a greater number of connections to saturate the link (Figure 3). One
possible cause for such distinct tendency is difference in the trans-
port mechanisms of READ and WRITE [2]. READ throughput is
bottlenecked by the maximum number of outstanding requests
and this impact is exacerbated in longer delay settings. Results
here suggest an insight for designing RDMA-based systems over
millisecond-scale network: by favoring WRITE over READ when-
ever possible, the system is expected to deliver better performance
and more stability.

4 Conclusion & Future Work
This paper investigates the performance of RDMA over network
paths of millisecond latency. The preliminary study based on a
network delay emulation demonstrates that RDMA still retains its
high throughput merit of saturating the line rate when we use a
large message size or multiple parallel connections. This implies
that increased RTT alone does not limit the RDMA’s potential as
a communication method over the long path. Results also suggest
another insight for different modes of RDMA operation: READ
throughput is more vulnerable to RTT increase than that of WRITE.

In this work we have only varied RTT while keeping zero packet
loss. Along with RTT, the probability of packet drop or corrup-
tion also increases as the network path lengthens. We plan to test
RDMA’s performance characteristics under the varying loss rate.
Experimenting with a more comprehensive set of application work-
loads is another future work.

Acknowledgments
This research was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2022R1A2C200906213)

References
[1] [n. d.]. DPDK Sample Applications User Guides. https://doc.dpdk.org/guides-

23.11/sample_app_ug/packet_ordering.html
[2] [n. d.]. InfiniBand Architecture Specification Volume 1 Release 1.4.
[3] [n. d.]. perftest. https://github.com/linux-rdma/perftest
[4] Wei Bai et al. 2023. Empowering Azure Storage with RDMA. In NSDI 2023. USENIX

Association, Boston, MA, 49–67.
[5] Yixiao Gao et al. 2021. When Cloud Storage Meets RDMA. In NSDI 2021. USENIX

Association, 519–533.
[6] Cisco Systems Inc. 2009. Priority Flow Control: Build Reliable Layer 2 Infrastruc-

ture.

20

https://doc.dpdk.org/guides-23.11/sample_app_ug/packet_ordering.html
https://doc.dpdk.org/guides-23.11/sample_app_ug/packet_ordering.html
https://github.com/linux-rdma/perftest

	Abstract
	1 Introduction
	2 Emulating Millisecond-scale Path
	3 Preliminary Results
	4 Conclusion & Future Work
	Acknowledgments
	References

